login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A096810 Fractal table, read by antidiagonals, consisting of numbers 0..3. 2
0, 2, 0, 2, 1, 0, 2, 1, 2, 0, 2, 2, 1, 1, 0, 2, 1, 3, 0, 2, 0, 2, 2, 1, 1, 2, 1, 0, 2, 1, 2, 1, 2, 1, 2, 0, 2, 2, 2, 1, 1, 2, 1, 1, 0, 2, 1, 3, 0, 3, 0, 3, 0, 2, 0, 2, 2, 1, 2, 3, 1, 0, 1, 2, 1, 0, 2, 1, 2, 1, 3, 1, 2, 0, 2, 1, 2, 0, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 0, 2, 1, 3, 0, 2, 1, 3, 0, 2, 1, 3, 0, 2, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Antidiagonal sums form A007494 (numbers congruent to 0 or 2 mod 3). Sums of squares of antidiagonals form A096808 and is congruent to A004526 mod 4. Using these terms as powers of (-1) results in the table of signs A096809.

LINKS

Table of n, a(n) for n=0..104.

FORMULA

For n>=0: T(0, n)=0, T(n+1, 0)=2, T(n+1, n+1)=1. T(k, n) = 3 - T(n, k) for n>0, k>=0 and n != k. Construction: start with T(0, 0)=0 and proceed for all i>=0 in this way: for k=0..2^i-1, concatenate the (2^i)x(2^i) matrix to itself to form a matrix twice its size: T(n, k+2^i)=T(n, k), T(n+2^i, k)=T(n, k), T(n+2^i, k+2^i)=T(n, k); then for n=0..2^i-1, increment these elements by +1: T(2^i, n), T(n+2^i, n), T(n+2^i, 2^i). Example: start with the matrix: 0 0 2 1 concatenate this matrix to itself to form a matrix twice the size: 0 0 | 0 0 2 1 | 2 1 ----+---- 0 0 | 0 0 2 1 | 2 1 then increment the elements that comprise the far left column of the matrix in the lower right quadrant and those elements that comprise the top row and diagonal of the matrix in the lower left quadrant (the element found in both the top row and diagonal gets incremented twice): 0 0 | 0 0 2 1 | 2 1 ----+---- 2 1 | 1 0 2 2 | 3 1 Repeating these steps forms this table.

EXAMPLE

The elements in the table begin:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

2 1 1 0 2 1 1 0 2 1 1 0 2 1 1 0

2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1

2 1 1 1 1 0 0 0 2 1 1 1 1 0 0 0

2 2 2 1 3 1 2 1 2 2 2 1 3 1 2 1

2 1 2 0 3 1 1 0 2 1 2 0 3 1 1 0

2 2 3 2 3 2 3 1 2 2 3 2 3 2 3 1

2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

2 2 2 1 2 1 2 1 3 1 2 1 2 1 2 1

2 1 2 0 2 1 1 0 3 1 1 0 2 1 1 0

2 2 3 2 2 2 3 1 3 2 3 1 2 2 3 1

2 1 1 1 2 0 0 0 3 1 1 1 1 0 0 0

2 2 2 1 3 2 2 1 3 2 2 1 3 1 2 1

2 1 2 0 3 1 2 0 3 1 2 0 3 1 1 0

2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 1

The sum of the antidiagonals begin: {0,2,3,5,6,8,9,11,12,14,...}.

PROG

(PARI) T(n, k)=local(M, D=6); if(n<0 || k<0, 0, M=matrix(2^D, 2^D); M[2, 1]=2; M[2, 2]=1; for(i=1, D-1, for(r=1, 2^i, for(c=1, 2^i, M[r, c+2^i]=M[r, c]; M[r+2^i, c]=M[r, c]; M[r+2^i, c+2^i]=M[r, c]); M[1+2^i, r]+=1; M[r+2^i, r]+=1; M[r+2^i, 1+2^i]+=1; )); M[n+1, k+1])

CROSSREFS

Cf. A096808, A096809, A007494, A003987.

Sequence in context: A067167 A255195 A194317 * A190436 A133696 A195050

Adjacent sequences:  A096807 A096808 A096809 * A096811 A096812 A096813

KEYWORD

nonn,tabl

AUTHOR

Paul D. Hanna, Jul 21 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 1 04:57 EDT 2020. Contains 334758 sequences. (Running on oeis4.)