|
|
A096635
|
|
Let p = n-th prime == 7 mod 8 (A007522); a(n) = smallest prime q such that p is not a square mod q.
|
|
3
|
|
|
5, 3, 7, 3, 3, 11, 5, 5, 11, 3, 3, 7, 5, 3, 3, 7, 3, 3, 5, 3, 3, 7, 5, 3, 5, 3, 3, 5, 13, 3, 3, 5, 3, 17, 5, 3, 3, 3, 3, 11, 5, 3, 17, 3, 7, 5, 5, 3, 3, 3, 7, 7, 5, 3, 5, 3, 7, 5, 3, 5, 11, 3, 3, 5, 3, 5, 3, 3, 5, 11, 5, 3, 13, 3, 3, 7, 7, 11, 3, 3, 3, 3, 5, 3, 7, 5, 19, 3, 5, 3, 3, 3, 5, 3, 7, 3, 5, 3, 13
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Robert Israel, Table of n, a(n) for n = 1..10000
|
|
MAPLE
|
P:= select(isprime, [seq(i, i=7..3000, 8)]):
f:= proc(n) local p, q;
p:= P[n]; q:= 2;
while numtheory:-quadres(p, q)=1 do q:= nextprime(q) od;
q
end proc:
map(f, [$1..nops(P)]); # Robert Israel, Mar 13 2020
|
|
MATHEMATICA
|
f[n_] := Block[{k = 2}, While[ JacobiSymbol[n, Prime[k]] == 1, k++ ]; Prime[k]]; f /@ Select[ Prime[ Range[435]], Mod[ #, 8] == 7 &]
|
|
CROSSREFS
|
Sequence in context: A117126 A048997 A331524 * A021953 A171530 A266684
Adjacent sequences: A096632 A096633 A096634 * A096636 A096637 A096638
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Robert G. Wilson v, Jun 24 2004
|
|
STATUS
|
approved
|
|
|
|