login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096608
Triangle read by rows: T(n,k)=number of Catalan knight paths in right half-plane from (0,0) to (n,k), for 0 <= k <= 2n, n >= 0. (See A096587 for the definition of a Catalan knight.)
7
1, 0, 0, 1, 2, 1, 0, 0, 1, 0, 2, 3, 2, 0, 0, 1, 8, 6, 1, 3, 4, 3, 0, 0, 1, 6, 12, 16, 12, 3, 4, 5, 4, 0, 0, 1, 44, 33, 18, 21, 27, 20, 6, 5, 6, 5, 0, 0, 1, 60, 76, 95, 72, 40, 34, 41, 30, 10, 6, 7, 6, 0, 0, 1, 256, 210, 154, 155, 177, 135, 75, 52, 58, 42, 15, 7, 8, 7, 0, 0, 1, 460, 520, 581, 480
OFFSET
0,5
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..9999 (rows 0..99 of triangle, flattened)
Jean-Luc Baril, Nathanaël Hassler, Sergey Kirgizov, and José L. Ramírez, Grand zigzag knight's paths, arXiv:2402.04851 [math.CO], 2024.
FORMULA
T(0, 0) = 1, T(0, 1) = 0, T(0, 2) = 0; T(1, 0) = 0, T(1, 1) = 0, T(1, 2) = 1.
For n >= 2, T(n, 0) = 2*T(n-2, 1) + 2*T(n-1, 2); T(n, 1) = T(n-2, 0) + T(n-2, 2) + T(n-1, 3) + T(n-1, 1); for 2 <= k <= 2n, T(n, k) = T(n-2, k-1) + T(n-2, k+1) + T(n-1, k-2) + T(n-1, k+2).
T(n, 0) + 2*Sum_{k = 1..2*n} T(n, k) = A002605(k). - Rémy Sigrist, Jun 29 2022
EXAMPLE
Rows:
1;
0, 0, 1;
2, 1, 0, 0, 1;
0, 2, 3, 2, 0, 0, 1;
T(3,2) counts these paths:
(0,0)-(1,-2)-(2,0)-(3,2);
(0,0)-(1,2)-(2,0)-(3,2);
(0,0)-(1,2)-(2,4)-(3,2).
MATHEMATICA
A096608[rowmax_]:=Module[{T}, T[0, 0]=1; T[n_, k_]:=T[n, k]=If[k<=2n, T[n-1, Abs[k-2]]+T[n-2, Abs[k-1]]+T[n-1, k+2]+T[n-2, k+1], 0]; Table[T[n, k], {n, 0, rowmax}, {k, 0, 2n}]]; A096608[10] (* Generates 11 rows *) (* Paolo Xausa, May 09 2023 *)
PROG
(PARI) row(n) = { my (rr=0, r=1); for (k=1, n, [rr, r]=[r, r*(1+'X^4)+rr*('X^3+'X^5)]); Vec(r)[1+2*n..1+4*n] } \\ Rémy Sigrist, Jun 29 2022
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Clark Kimberling, Jun 29 2004
EXTENSIONS
Offset changed to 0 by Rémy Sigrist, Jun 29 2022
STATUS
approved