OFFSET
1,7
COMMENTS
Row sums are the Carlitz sequence, A003242.
LINKS
Joerg Arndt, Table of n, a(n) for n = 1..1035 (rows 1..45, flattened)
FORMULA
Define s(0)=1, T(1, 1)=1 and T(i, j)=0 for j>i. For n>=2 and 1<=k<=n, define s(n)=T(n, 1)+T(n, 2)+...+T(n, n) and T(n, k)=s(n-k)-T(n-k, k).
G.f. for column k: C(x)*x^k/(1+x^k) where C(x) is the g.f. for A003242. - John Tyler Rascoe, May 16 2024
EXAMPLE
Triangle starts
01: 1,
02: 0, 1,
03: 1, 1, 1,
04: 2, 0, 1, 1,
05: 2, 2, 1, 1, 1,
06: 5, 4, 2, 1, 1, 1,
07: 9, 5, 3, 3, 1, 1, 1,
08: 14, 10, 6, 3, 3, 1, 1, 1,
09: 25, 18, 12, 6, 4, 3, 1, 1, 1,
10: 46, 29, 20, 13, 6, 4, 3, 1, 1, 1,
11: 78, 53, 33, 20, 13, 7, 4, 3, 1, 1, 1,
12: 136, 95, 59, 36, 22, 13, 7, 4, 3, 1, 1, 1,
13: 242, 161, 104, 65, 36, 22, 14, 7, 4, 3, 1, 1, 1,
14: 419, 283, 181, 111, 67, 38, 22, 14, 7, 4, 3, 1, 1, 1,
15: 733, 500, 319, 194, 118, 68, 38, 23, 14, 7, 4, 3, 1, 1, 1,
16: 1291, 869, 557, 342, 201, 120, 70, 38, 23, 14, 7, 4, 3, 1, 1, 1,
...
T(6,1)=5 counts the compositions 1+2+1+2, 1+2+3, 1+3+2, 1+4+1, 1+5.
PROG
(PARI)
R=20;
M=matrix(R, R);
T(n, k) = if (n==0, k==0, if (k==0, n==0, M[n, k] ) );
{ for (n=1, R,
for(k=1, n,
M[n, k] = sum(j=0, n, T(n-k, j)) - T(n-k, k);
);
); }
for (n=1, R, for(k=1, n, print1(M[n, k], ", ") ); );
\\ Joerg Arndt, May 21 2013
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jun 27 2004
EXTENSIONS
Corrected by Joerg Arndt, May 21 2013
STATUS
approved