The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096386 Expansion of x^2(x^4+x^2+x+1)/(x^7-x^6-x+1). 0
 0, 0, 1, 2, 3, 3, 4, 4, 5, 6, 7, 7, 8, 8, 9, 10, 11, 11, 12, 12, 13, 14, 15, 15, 16, 16, 17, 18, 19, 19, 20, 20, 21, 22, 23, 23, 24, 24, 25, 26, 27, 27, 28, 28, 29, 30, 31, 31, 32, 32, 33, 34, 35, 35, 36, 36, 37, 38, 39, 39, 40, 40, 41, 42, 43, 43, 44, 44, 45, 46, 47, 47, 48, 48 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS First differences are 6-periodic. Number of numbers <= n which are divisible by 2 or 3. - Vladeta Jovovic, Mar 13 2007 REFERENCES S. Ramanujan, Question 723, Collected Papers of Srinivasa Ramanujan, p. 332, Ed. G. H. Hardy et al., AMS Chelsea 2000. LINKS S. Ramanujan, Question 723, J. Ind. Math. Soc. Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1). FORMULA a(n) = [n/2] + [(n+3)/6] = [n/3] + [(n+2)/6] + [(n+4)/6]. G.f.: x^2(1+x+x^2+x^4)/((1-x)(1-x^6)). a(-n) = -a(n-1)-1. a(n) = 4 + a(n-6). a(n) = Sum_{k=0..n} (1/90)*(-11*(k mod 6)+19*((k+1) mod 6)+4*((k+2) mod 6)+4*((k+3) mod 6)-11*((k+4) mod 6)+19*((k+5) mod 6)))-1. - Paolo P. Lava, Jun 25 2007 MATHEMATICA CoefficientList[Series[x^2 (1 + x + x^2 + x^4)/((1 - x) (1 - x^6)), {x, 0, 73}], x] (* Michael De Vlieger, Apr 13 2016 *) LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {0, 0, 1, 2, 3, 3, 4}, 80] (* Harvey P. Dale, Jul 04 2016 *) PROG (PARI) a(n) = floor(n/2) + floor((n+3)/6) (PARI) a(n)=n\2+(n+3)\6 CROSSREFS Sequence in context: A309077 A057365 A014245 * A257063 A273663 A135671 Adjacent sequences:  A096383 A096384 A096385 * A096387 A096388 A096389 KEYWORD nonn,easy AUTHOR Ralf Stephan, Aug 05 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 21:16 EDT 2021. Contains 346441 sequences. (Running on oeis4.)