

A096380


Differences between the sum of the first three primes and the fourth prime in consecutive prime quadruples.


0



3, 4, 10, 14, 22, 26, 30, 40, 46, 56, 66, 74, 78, 84, 98, 106, 116, 126, 132, 140, 146, 154, 168, 184, 194, 202, 206, 202, 218, 234, 256, 258, 274, 282, 294, 304, 314, 324, 338, 342, 358, 368, 382, 378, 384, 406, 432, 446, 450, 460, 462, 474, 486, 502, 518, 526
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


COMMENTS

There are occurrences where the next term is less than the current term. Conjecture: The number of occurrences where the current term exceeds the next term is infinite.


LINKS

Table of n, a(n) for n=2..57.


FORMULA

prime(n) + prime(n+1)+prime(n+2)  prime(n+3)


MATHEMATICA

Total[Take[#, 3]]Last[#]&/@Partition[Prime[Range[100]], 4, 1] (* Harvey P. Dale, May 14 2011 *)


PROG

(PARI) g(n)=for(x=1, n, print1(prime(x)+prime(x+1)+prime(x+2)prime(x+3)", "))


CROSSREFS

Sequence in context: A143372 A035594 A167273 * A309478 A329805 A071019
Adjacent sequences: A096377 A096378 A096379 * A096381 A096382 A096383


KEYWORD

nonn


AUTHOR

Cino Hilliard, Aug 04 2004


STATUS

approved



