login
A096357
Lcm[{ad(n)}], i.e. the least common multiple of the anti-divisors of n.
2
2, 3, 6, 4, 30, 15, 6, 84, 42, 40, 90, 36, 30, 33, 2310, 420, 78, 312, 42, 180, 90, 112, 3570, 204, 990, 25080, 114, 60, 126, 4095, 4290, 276, 4830, 24, 150, 23100, 6006, 432, 54, 7140, 14790, 696, 8190, 33852, 17670, 3040, 1386, 1980, 102, 840, 210, 36, 12210
OFFSET
3,1
COMMENTS
See A066272 for definition of anti-divisor. Offset is 3 because 1 and 2 have no anti-divisors.
LINKS
EXAMPLE
The anti-divisors of 7 are 2,3 and 5, so a(7)=30.
The anti-divisors of 9 are 2 and 6, so a(9)=6.
MATHEMATICA
a096357[n_] := Module[{ad},
ad := Cases[Range[2, n - 1], _?(Abs[Mod[n, #] - #/2] < 1 &)];
If[Length[ad] == 0, 0, LCM @@ ad]] (* Michael De Vlieger, Aug 09 2014*)
PROG
(Python)
from sympy import lcm
A096357 = [lcm([d for d in range(2, n, 2) if n%d and not 2*n%d]+[d for d in range(3, n, 2) if n%d and 2*n%d in [d-1, 1]]) for n in range(3, 10**5)] # Chai Wah Wu, Aug 09 2014
CROSSREFS
Cf. A066272.
Sequence in context: A137524 A282507 A156055 * A091507 A098282 A034855
KEYWORD
nonn
AUTHOR
Jon Perry, Jun 30 2004
EXTENSIONS
Offset changed by N. J. A. Sloane, Aug 22 2014
STATUS
approved