This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096357 Lcm[{ad(n)}], i.e. the least common multiple of the anti-divisors of n. 2
 2, 3, 6, 4, 30, 15, 6, 84, 42, 40, 90, 36, 30, 33, 2310, 420, 78, 312, 42, 180, 90, 112, 3570, 204, 990, 25080, 114, 60, 126, 4095, 4290, 276, 4830, 24, 150, 23100, 6006, 432, 54, 7140, 14790, 696, 8190, 33852, 17670, 3040, 1386, 1980, 102, 840, 210, 36, 12210 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,1 COMMENTS See A066272 for definition of anti-divisor. Offset is 3 because 1 and 2 have no anti-divisors. LINKS Paolo P. Lava, Table of n, a(n) for n = 3..10000 EXAMPLE The anti-divisors of 7 are 2,3 and 5, so a(7)=30. The anti-divisors of 9 are 2 and 6, so a(9)=6. MAPLE A096357:=proc(q) local a, b, k, n; for n from 3 to q do a:={}; for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then a:=a union {k}; fi; od; print(lcm(op(a))); od; end: A096357(1000); # Paolo P. Lava, Feb 19 2013 MATHEMATICA a096357[n_] := Module[{ad}, ad := Cases[Range[2, n - 1], _?(Abs[Mod[n, #] - #/2] < 1 &)]; If[Length[ad] == 0, 0, LCM @@ ad]] (* Michael De Vlieger, Aug 09 2014*) PROG (Python) from sympy import lcm A096357 = [lcm([d for d in xrange(2, n, 2) if n%d and not 2*n%d]+[d for d in xrange(3, n, 2) if n%d and 2*n%d in [d-1, 1]]) for n in xrange(3, 10**5)] # Chai Wah Wu, Aug 09 2014 CROSSREFS Cf. A066272. Sequence in context: A137524 A282507 A156055 * A091507 A098282 A034855 Adjacent sequences:  A096354 A096355 A096356 * A096358 A096359 A096360 KEYWORD nonn AUTHOR Jon Perry, Jun 30 2004 EXTENSIONS Offset changed by N. J. A. Sloane, Aug 22 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 17 04:31 EST 2019. Contains 319206 sequences. (Running on oeis4.)