login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A096134 a(1) = 2; for n > 1: a(n) = least multiple m of n such that m is coprime to n+1 and the absolute difference of a(n) and a(n-1) is a prime distinct from all earlier such differences of consecutive terms. 2
2, 4, 9, 12, 5, 18, 7, 80, 9, 40, 11, 48, 65, 112, 15, 128, 85, 18, 209, 100, 21, 44, 391, 24, 125, 208, 27, 224, 493, 30, 341, 64, 231, 68, 175, 36, 185, 418, 39, 80, 697, 84, 215, 88, 225, 46, 329, 48, 539, 100, 153, 364, 1007, 54, 715, 56, 285, 58, 767, 120, 61, 1178, 315 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Condition gcd(a(n),n+1) = 1 ensures that a(n+1) exists.

Primes arising as absolute first differences are given in A096878.

For corresponding sequence starting (more naturally) at 1 see A096879.

LINKS

Table of n, a(n) for n=1..63.

EXAMPLE

a(8) has to be a multiple of 8; 80 is the smallest one that satisfies all conditions: 80 is coprime to 9, abs(a(7) - 80) = 73 is prime and distinct from all earlier absolute differences 2, 5, 3, 7, 13, 11. Hence a(8) = 80.

a(9) has to be a multiple of 9; 9 is the smallest one that satisfies all conditions: 9 is coprime to 10, abs(a(8) - 9) = 71 is prime and distinct from all earlier absolute differences 2, 5, 3, 7, 13, 11, 73. Hence a(9) = 9.

PROG

(PARI) {print1(a=2, ", "); v=Set([]); for(n=2, 63, k=1; b=1; while(b, m=k*n; p=abs(m-a); if(gcd(m, n+1)==1&&isprime(p)&&setsearch(v, p)==0, v=setunion(v, Set(p)); print1(m, ", "); a=m; b=0, k++)))}

CROSSREFS

Cf. A096878, A096879.

Sequence in context: A115905 A292769 A307997 * A058885 A256446 A022428

Adjacent sequences:  A096131 A096132 A096133 * A096135 A096136 A096137

KEYWORD

nonn

AUTHOR

Amarnath Murthy, Jul 04 2004

EXTENSIONS

Edited, corrected and extended by Klaus Brockhaus, Jul 14 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 26 17:00 EDT 2021. Contains 347670 sequences. (Running on oeis4.)