login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1, a(n) = largest prime divisor of b(n), where b(1) = 1, b(n) = n*b(n-1) + 1 = A002627(n).
4

%I #19 Oct 29 2024 03:28:06

%S 1,3,5,41,103,1237,433,2389,2711,145007,523,164611949,232603841,

%T 201069629,132267077,35951249665217,204405098431,392881768421,

%U 52255141388393,8098687,43894318766250120011,386270005143001056097

%N a(1) = 1, a(n) = largest prime divisor of b(n), where b(1) = 1, b(n) = n*b(n-1) + 1 = A002627(n).

%H Amiram Eldar, <a href="/A096058/b096058.txt">Table of n, a(n) for n = 1..69</a>

%F a(n) = A006530(A002627(n)).

%e a(4) = 41 because b(3) = 3*b(2)+1 = 3*3+1 = 10 and 4*10+1 = 41, which is prime.

%e b(n) = 1, 3, 10, 41, ... with largest prime divisors a(n) = 1, 3, 5, 41, ...

%t nxt[{n_,a_}]:={n+1,a(n+1)+1}; FactorInteger[#][[-1,1]]&/@NestList[nxt,{1,1},25][[;;,2]] (* _Harvey P. Dale_, Jul 22 2024 *)

%Y Cf. A096057, A006530, A002627, A096057.

%K nonn

%O 1,2

%A _Amarnath Murthy_, Jun 17 2004

%E Corrected and extended by _Ray G. Opao_, Aug 02 2004

%E Edited by _Jonathan Sondow_, Jan 09 2005