login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A096044 Triangle read by rows: T(n,k) = (n+1,k)-th element of (M^10-M)/9, where M is the infinite lower Pascal's triangle matrix, 1<=k<=n. 1
1, 11, 2, 111, 33, 3, 1111, 444, 66, 4, 11111, 5555, 1110, 110, 5, 111111, 66666, 16665, 2220, 165, 6, 1111111, 777777, 233331, 38885, 3885, 231, 7, 11111111, 8888888, 3111108, 622216, 77770, 6216, 308, 8, 111111111, 99999999, 39999996, 9333324, 1399986, 139986, 9324, 396, 9 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Alois P. Heinz, Rows n = 1..141, flattened

EXAMPLE

Triangle begins:

1;

11, 2;

111, 33, 3;

1111, 444, 66, 4;

11111, 5555, 1110, 110, 5;

111111, 66666, 16665, 2220, 165, 6;

MAPLE

P:= proc(n) option remember; local M; M:= Matrix(n, (i, j)-> binomial(i-1, j-1)); (M^10-M)/9 end: T:= (n, k)-> P(n+1)[n+1, k]: seq(seq(T(n, k), k=1..n), n=1..11);  # Alois P. Heinz, Oct 07 2009

MATHEMATICA

P[n_] := P[n] = With[{M = Array[Binomial[#1-1, #2-1]&, {n, n}]}, (MatrixPower[M, 10] - M)/9]; T[n_, k_] := P[n+1][[n+1, k]]; Table[ Table[T[n, k], {k, 1, n}], {n, 1, 11}] // Flatten (* Jean-Fran├žois Alcover, Jan 28 2015, after Alois P. Heinz *)

CROSSREFS

Cf. A007318. First column gives A000042. Row sums give A016135.

Cf. A096034, A096035, A096039, A096040, A096041, A096042, A096043.

Sequence in context: A110767 A089365 A130217 * A160464 A038316 A139311

Adjacent sequences:  A096041 A096042 A096043 * A096045 A096046 A096047

KEYWORD

nonn,tabl

AUTHOR

Gary W. Adamson, Jun 17 2004

EXTENSIONS

Edited and more terms from Alois P. Heinz, Oct 07 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 18:46 EDT 2021. Contains 345419 sequences. (Running on oeis4.)