login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096040
Triangle read by rows: T(n,k) = (n+1,k)-th element of (M^6-M)/5, where M is the infinite lower Pascal's triangle matrix, 1<=k<=n.
1
1, 7, 2, 43, 21, 3, 259, 172, 42, 4, 1555, 1295, 430, 70, 5, 9331, 9330, 3885, 860, 105, 6, 55987, 65317, 32655, 9065, 1505, 147, 7, 335923, 447896, 261268, 87080, 18130, 2408, 196, 8, 2015539, 3023307, 2015532, 783804, 195930, 32634, 3612, 252, 9
OFFSET
1,2
EXAMPLE
Triangle begins:
1;
7, 2;
43, 21, 3;
259, 172, 42, 4;
1555, 1295, 430, 70, 5;
9331, 9330, 3885, 860, 105, 6;
MAPLE
P:= proc(n) option remember; local M; M:= Matrix(n, (i, j)-> binomial(i-1, j-1)); (M^6-M)/5 end: T:= (n, k)-> P(n+1)[n+1, k]: seq(seq(T(n, k), k=1..n), n=1..11); # Alois P. Heinz, Oct 07 2009
MATHEMATICA
max = 11; M = Table[If[k > n, 0, Binomial[n, k]], {n, 0, max}, {k, 0, max} ];
T = (MatrixPower[M, 6] - M)/5;
Table[T[[n + 1]][[1 ;; n]] , {n, 1, max}] // Flatten (* Jean-François Alcover, May 24 2016 *)
CROSSREFS
Cf. A007318. First column gives A003464. Row sums give A016130.
Sequence in context: A222555 A246799 A248189 * A038268 A100983 A350621
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jun 17 2004
EXTENSIONS
Edited with more terms by Alois P. Heinz, Oct 07 2009
STATUS
approved