login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096014
a(n) = (smallest prime factor of n) * (least prime that is not a factor of n), with a(1)=2.
6
2, 6, 6, 6, 10, 10, 14, 6, 6, 6, 22, 10, 26, 6, 6, 6, 34, 10, 38, 6, 6, 6, 46, 10, 10, 6, 6, 6, 58, 14, 62, 6, 6, 6, 10, 10, 74, 6, 6, 6, 82, 10, 86, 6, 6, 6, 94, 10, 14, 6, 6, 6, 106, 10, 10, 6, 6, 6, 118, 14, 122, 6, 6, 6, 10, 10, 134, 6, 6, 6, 142, 10, 146, 6, 6, 6, 14, 10, 158, 6, 6, 6
OFFSET
1,1
LINKS
FORMULA
a(n) = A020639(n)*A053669(n);
A096015(n) = a(n)/2.
If n (mod 6) = 2, 3 or 4, then a(n) = 6. If n (mod 6) = 0, 1 or 5, then a(n) belongs to A001747 less the first three terms or belongs to A073582 less the first two terms. - Robert G. Wilson v, Jun 15 2004
From Bill McEachen, Jul 26 2024_: (Start)
a(n) <= 2*n, except when n = 2.
a(n) = 2*n for n an odd prime. (End)
MAPLE
f:= proc(n) local p;
p:= 3;
if n::even then
while type(n/p, integer) do p:= nextprime(p) od;
else
while not type(n/p, integer) do p:= nextprime(p) od:
fi;
2*p;
end proc:
f(1):= 2:
map(f, [$1..100]); # Robert Israel, Jun 22 2018
MATHEMATICA
PrimeFactors[n_] := Flatten[ Table[ #[[1]], {1} ] & /@ FactorInteger[n]]; f[1] = 2; f[n_] := Block[ {k = 1}, While[ Mod[ n, Prime[k]] == 0, k++ ]; Prime[k]PrimeFactors[n][[1]]]; Table[ f[n], {n, 83}] (* Robert G. Wilson v, Jun 15 2004 *)
spfn[n_]:=Module[{fi=FactorInteger[n][[;; , 1]], k=2}, While[MemberQ[fi, k], k=NextPrime[k]]; fi[[1]]*k]; Array[spfn, 90] (* Harvey P. Dale, Sep 22 2024 *)
PROG
(PARI) dnd(n) = forprime(p=2, , if (n % p, return(p)));
lpf(n) = if (n==1, 1, forprime(p=2, , if (!(n % p), return(p))));
a(n) = dnd(n)*lpf(n); \\ Michel Marcus, Jun 22 2018
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Reinhard Zumkeller, Jun 15 2004
STATUS
approved