This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A096007 Scan Pascal's triangle (A007318) from left to right, record smallest prime factor of each entry. 0
 2, 3, 3, 2, 2, 2, 5, 2, 2, 5, 2, 3, 2, 3, 2, 7, 3, 5, 5, 3, 7, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 11, 5, 3, 2, 2, 2, 2, 3, 5, 11, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 13, 2, 2, 5, 3, 2, 2, 3, 5, 2, 2, 13, 2, 7, 2, 7, 2, 3, 2, 3, 2, 7, 2, 7, 2, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3, 3, 5, 3 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS EXAMPLE n Pascal's Triangle 1 1 2 1 2 1 3 1 3 3 1 4 1 4 6 4 1 so 2, 2, 2 = smallest prime factors of row 4 = entries position 4, 5, 6 in the sequence. PROG (PARI) \Smallest prime factors of numbers in Pascal's triangle. pascal(n) = { local(x, y, z, f, z1); for(x=1, n, for(y=1, x-1, z=binomial(x, y); f=Vec(factor(z)); z1=f[1][1]; print1(z1", ") ); ) } CROSSREFS Cf. A007318. Sequence in context: A011154 A048466 A096838 * A269043 A059252 A251619 Adjacent sequences:  A096004 A096005 A096006 * A096008 A096009 A096010 KEYWORD easy,nonn AUTHOR Cino Hilliard, Jul 25 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 20 18:56 EDT 2019. Contains 326154 sequences. (Running on oeis4.)