|
|
A095991
|
|
Numbers n such that f(k) * 2^n - 1 is prime, where f(j) = A070826(j) and k is the number of decimal digits of 2^n.
|
|
0
|
|
|
2, 3, 4, 6, 14, 17, 18, 23, 33, 43, 45, 53, 60, 70, 114, 141, 162, 178, 387, 657, 787, 951, 1517, 1882, 1999, 2423, 2722, 3635, 3636, 3893, 5021, 5631
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(1) through a(32) have been proved to be prime with WinPFGW. a(32) has 7901 digits. No more terms up to 7300.
Results were computed using the PrimeFormGW (PFGW) primality-testing program. - Hugo Pfoertner, Nov 14 2019
|
|
LINKS
|
Table of n, a(n) for n=1..32.
|
|
EXAMPLE
|
a(5)=14 because 1155 * 2^14 - 1 = 18923519, a prime.
|
|
MATHEMATICA
|
Do[ If[ PrimeQ[ Product[ Prime[i], {i, Floor[ n / Log[2, 10] + 1]}] * 2^(n - 1) - 1], Print[n]], {n, 7300}] (* Robert G. Wilson v, Jul 23 2004 *)
|
|
CROSSREFS
|
Sequence in context: A038767 A188715 A174046 * A293714 A049911 A056712
Adjacent sequences: A095988 A095989 A095990 * A095992 A095993 A095994
|
|
KEYWORD
|
more,nonn,base
|
|
AUTHOR
|
Jason Earls, Jul 18 2004
|
|
EXTENSIONS
|
Edited by Robert G. Wilson v, Jul 23 2004
|
|
STATUS
|
approved
|
|
|
|