Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #32 Aug 03 2024 07:16:07
%S 1,1,1,2,1,2,2,1,1,2,2,1,2,1,1,3,2,3,1,1,3,1,1,3,3,1,3,3,1,3,3,2,3,3,
%T 3,2,3,3,3,3,1,2,1,3,3,3,3,2,2,2,3,2,3,2,3,2,2,3,3,2,3,2,2,2,3,2,2,2,
%U 2,2,3,2,2,2,2,2,2,2,2,2,2,2,3,2,2,3,2,2,3,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
%N Function f(x) = phi(sigma(x)) is iterated with initial value n; a(n) is the length of the cycle into which the trajectory merges.
%C Diagnosis of true cycle of length m: a(j-m) = a(j), but a(j-d) = a(j) cases are excluded for d dividing m.
%C Length 5 is rare. Example: a(6634509269055173050761216000)=5 and the 5-cycle is {6634509269055173050761216000, 7521613519844726223667200000, 7946886558074859593662464000, 7794495412499746337587200000, 7970172471593905204651622400, 6634509269055173050761216000}. The initial values 2^79 = 604462909807314587353088 and 2^83 = 9671406556917033397649408 after more than 250 transient terms reach this cycle.
%C a(i) is in {1,2,3,4,6,9,11,12,15,18} for 1 <= i < 254731536. The number 254731536 is the smallest of many integers that are not known to reach a cycle (see the file for a list). - _Jud McCranie_, Jun 05 2024
%H Charles R Greathouse IV, <a href="/A095955/b095955.txt">Table of n, a(n) for n = 1..10000</a>
%H Jud McCranie, <a href="/A095955/a095955.txt">Unknown cases < 725000000</a>
%H Jud McCranie, <a href="/A095955/a095955_2.txt">Details of various cycles</a>
%H <a href="/index/Pri#primes_decomp_of">Index to sequences related to decomposition of primes in quadratic fields</a>
%e Occurrences of cycle lengths if n <= 1000: {C1=110, C2=781, C3=36, C4=67, C5=0, C6=6, C7=0, ...}.
%t g[n_] := EulerPhi[ DivisorSigma[1, n]]; f[n_] := f[n] = Block[{lst = NestWhileList[g, n, UnsameQ, All ]}, -Subtract @@ Flatten[ Position[lst, lst[[ -1]]]]]; Table[ f[n], {n, 105}] (* _Robert G. Wilson v_, Jul 14 2004 *)
%o (PARI) f(x)=eulerphi(sigma(x))
%o a(n)=my(t=f(n),h=f(t),s); while(t!=h, t=f(t); h=f(f(h))); t=f(t); h=f(t); s=1; while(t!=h, s++; t=f(t); h=f(f(h))); s \\ _Charles R Greathouse IV_, Nov 22 2013
%Y Cf. A000010, A000203, A095952, A096887, A095953, A096526, A095954, A096888, A096889, A096890, A095956.
%K nonn
%O 1,4
%A _Labos Elemer_, Jul 13 2004