The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A095933 Number of walks of length 2n+1 between two nodes at distance 5 in the cycle graph C_10. 0
 2, 14, 72, 330, 1430, 6008, 24786, 101118, 409640, 1652090, 6643782, 26667864, 106914242, 428292590, 1714834440, 6863694378, 27466183286, 109894593848, 439656551730, 1758830875230, 7035859329512, 28144840135514 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS In general Cos(2Pi*k*r/m)Cos(2Pi*r/m)^n is the number of walks of length n between two nodes at distance k in the cycle graph C_m. Here we have m=10 and k=5. Herbert LINKS Index entries for linear recurrences with constant coefficients, signature (7,-13,4). FORMULA a(n) = 4^n/5*Sum_{r=0..9} (-1)^r*Cos(Pi*r/5)^(2n+1). a(n) = 7a(n-1)-13a(n-2)+4a(n-3). G.f.: -2x^2/((-1+4x)(1-3x+x^2)). a(n) = (8/5)*4^n+2/5*(sqrt(5)-2)*2^n*(3+sqrt(5))^(-n)-2/5*(sqrt(5)+2)*2^n*(3-sqrt(5))^(-n). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 24 2008 MAPLE f:= gfun:-rectoproc({- a(n) + 7*a(n-1) - 13*a(n-2) + 4*a(n-3), a(2)=2, a(3)=14, a(4)=72}, a(n), remember): map(f, [\$2..23]); # Georg Fischer, Jul 16 2020 MATHEMATICA f[n_]:=FullSimplify[TrigToExp[(4^n/5)Sum[(-1)^k*Cos[Pi*k/5]^(2n+1), {k, 0, 9}]]]; Table[f[n], {n, 1, 35}] CROSSREFS Sequence in context: A171012 A094583 A002058 * A263218 A189305 A043011 Adjacent sequences:  A095930 A095931 A095932 * A095934 A095935 A095936 KEYWORD nonn AUTHOR Herbert Kociemba, Jul 12 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 26 13:04 EDT 2022. Contains 354883 sequences. (Running on oeis4.)