Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Feb 28 2023 04:09:44
%S 1,10,181,2620,33571,402130,4619161,51572440,564151951,6077367550,
%T 64696307941,682266771460,7140400943131,74263608488170,
%U 768372476393521,7915352287541680,81238170587875111
%N Number of integers from 0 to 10^n - 1 whose decimal digits include at least one 0.
%H Vincenzo Librandi, <a href="/A095807/b095807.txt">Table of n, a(n) for n = 1..200</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (20,-109,90).
%F a(n) = 10^n + 9/8 - 9^(1+n)/8.
%F G.f.: (1-19*x+99*x^2)/((1-x)*(1-10*x)*(1-9*x)). - _Vincenzo Librandi_, Aug 14 2013
%F a(n) = 20*a(n-1) - 109*a(n-2) + 90*a(n-3); a(0)=1, a(1)=10, a(2)=181. - _Harvey P. Dale_, Jun 20 2015
%F Limit_{n->oo} a(n+1)/a(n) = 10. - _Bernard Schott_, Feb 28 2023
%e a(3)=181 because among the integers from 0 to 999 there are 181 numbers which contain at least 1 zero.
%t LinearRecurrence[{20,-109,90},{1,10,181},20] (* or *) Rest[ CoefficientList[ Series[(1-19x+99x^2)/((1-x)(1-10x)(1-9x)),{x,0,20}], x]] (* _Harvey P. Dale_, Jun 20 2015 *)
%o (PARI) a(n) = 10^n + 9/8 - 9^(1+n)/8; \\ _Michel Marcus_, Aug 13 2013
%o (Magma) [10^n + 9/8 - 9^(1+n)/8: n in [1..20]]; // _Vincenzo Librandi_, Aug 14 2013
%Y Cf. A016189.
%K nonn,easy,base
%O 1,2
%A _Michael Taktikos_, Aug 25 2004