login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095807
Number of integers from 0 to 10^n - 1 whose decimal digits include at least one 0.
1
1, 10, 181, 2620, 33571, 402130, 4619161, 51572440, 564151951, 6077367550, 64696307941, 682266771460, 7140400943131, 74263608488170, 768372476393521, 7915352287541680, 81238170587875111
OFFSET
1,2
FORMULA
a(n) = 10^n + 9/8 - 9^(1+n)/8.
G.f.: (1-19*x+99*x^2)/((1-x)*(1-10*x)*(1-9*x)). - Vincenzo Librandi, Aug 14 2013
a(n) = 20*a(n-1) - 109*a(n-2) + 90*a(n-3); a(0)=1, a(1)=10, a(2)=181. - Harvey P. Dale, Jun 20 2015
Limit_{n->oo} a(n+1)/a(n) = 10. - Bernard Schott, Feb 28 2023
EXAMPLE
a(3)=181 because among the integers from 0 to 999 there are 181 numbers which contain at least 1 zero.
MATHEMATICA
LinearRecurrence[{20, -109, 90}, {1, 10, 181}, 20] (* or *) Rest[ CoefficientList[ Series[(1-19x+99x^2)/((1-x)(1-10x)(1-9x)), {x, 0, 20}], x]] (* Harvey P. Dale, Jun 20 2015 *)
PROG
(PARI) a(n) = 10^n + 9/8 - 9^(1+n)/8; \\ Michel Marcus, Aug 13 2013
(Magma) [10^n + 9/8 - 9^(1+n)/8: n in [1..20]]; // Vincenzo Librandi, Aug 14 2013
CROSSREFS
Cf. A016189.
Sequence in context: A030048 A318796 A054918 * A064092 A171513 A240405
KEYWORD
nonn,easy,base
AUTHOR
Michael Taktikos, Aug 25 2004
STATUS
approved