login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of numbers obtained by reversing the first n digits of 1/phi and juxtaposing (phi denotes the golden ratio: A001622).
0

%I #2 Oct 09 2006 03:00:00

%S 0,6,0,1,6,0,8,1,6,0,0,8,1,6,0,3,0,8,1,6,0,3,3,0,8,1,6,0,9,3,3,0,8,1,

%T 6,0,8,9,3,3,0,8,1,6,0,8,8,9,3,3,0,8,1,6,0,7,8,8,9,3,3,0,8,1,6,0,4,7,

%U 8,8,9,3,3,0,8,1,6,0,9,4,7,8,8,9,3,3,0,8,1,6,0,8,9,4,7,8,8,9,3,3,0,8,1,6,0

%N Triangle of numbers obtained by reversing the first n digits of 1/phi and juxtaposing (phi denotes the golden ratio: A001622).

%H Paul Cooijmans, <a href="http://web.archive.org/web/20050302171708/http://members.chello.nl/p.cooijmans/gliaweb/tests/num.html">Numbers</a>, Item 16.

%H Paul Cooijmans, <a href="http://web.archive.org/web/20031006141136/http://members.chello.nl/p.cooijmans/gliaweb/tests/tfg/tfgshort.html">Short Test For Genius</a>, Item 32.

%e 0; 6,0; 1,6,0; 8,1,6,0; 0,8,1,6,0; 3,0,8,1,6,0; 3,3,0,8,1,6,0; 9,3,3,0,8,1,6,0;... (reverse order of 0.6; 0.61; 0.618; 0.6180; 0.61803; 0.618033; 0.6180339;...)

%o (PARI) a(n)=if(n<1,0,default(realprecision,n+2);floor((-1/2+sqrt(5)/2)*10^(n-1))%10); b(n)=1+binomial(1+floor(1/2+sqrt(2*n)),2)-n; for(n=1,120,print1(a(b(n)),",")

%Y Cf. A094214.

%Y Cf. A095713.

%K base,easy,nonn,tabl

%O 1,2

%A Herman Jamke (hermanjamke(AT)fastmail.fm), Jul 07 2004