login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A095691
Multiplicative with a(p^e) = A000720(e)+1.
10
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 4, 1, 2, 2, 4, 1, 1, 1, 3, 1
OFFSET
1,4
COMMENTS
The number of divisors of n that are terms of A056166. - Amiram Eldar, Oct 31 2023
FORMULA
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{q prime} 1/p^q) = Sum_{n>=1} 1/A056166(n) = 1.80728269690724154161... . - Amiram Eldar, Oct 31 2023
MATHEMATICA
Array[Times @@ Map[PrimePi@# + 1 &, FactorInteger[#][[All, -1]] ] &, 120] (* Michael De Vlieger, Jul 19 2017 *)
PROG
(PARI) A095691(n) = { my(f = factor(n), m = 1); for (k=1, #f~, m *= (1+primepi(f[k, 2])); ); m; } \\ Antti Karttunen, Jul 19 2017
(Python)
from sympy import factorint, primepi, prod
def a(n): return 1 if n==1 else prod(primepi(e) + 1 for e in factorint(n).values())
print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 19 2017
CROSSREFS
KEYWORD
mult,nonn,easy
AUTHOR
Vladeta Jovovic, Jul 06 2004
STATUS
approved