login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A095408 Total number of decimal digits in all distinct prime factors of n minus number of digits in n. 4
-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, -1, 1, -1, 0, 0, 1, 0, -1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, -1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, -1, 1, 2, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 2, 0, 0, -1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, -1, 0, 1, 0, 0, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, -1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,66
LINKS
FORMULA
a(n) = A095407(n) - A055642(n).
EXAMPLE
n=22: prime divisors are {2,11}, a(22) = 3-2 = 1.
n=63: prime divisors are {3,7}, a(63) = 2-2 = 0.
n=100: prime divisors are {2,5}, a(100) = 2-3 = -1.
MATHEMATICA
ffi[x_] :=Flatten[FactorInteger[x]] lf[x_] :=Length[FactorInteger[x]] ba[x_] :=Table[Part[ffi[x], 2*j-1], {j, 1, lf[x]}] tdp[x_] :=Flatten[Table[IntegerDigits[Part[ba[x], j]], {j, 1, lf[x]}], 1] pl[x_] :=Length[tdp[x]] nl[x_] :=Length[IntegerDigits[x]] t1=Table[nl[w], {w, 1, 1000}]; t2=Table[pl[w], {w, 1, 1000}]; t2-t1
(* Second program: *)
Array[Total@ IntegerLength[FactorInteger[#][[All, 1]]] - IntegerLength@ # - Boole[# == 1] &, 108] (* Michael De Vlieger, Dec 16 2017 *)
PROG
(PARI)
A095407(n) = vecsum(apply(p->#digits(p), factor(n)[, 1]));
A095408(n) = (A095407(n) - #digits(n)); \\ Antti Karttunen, Dec 16 2017
CROSSREFS
Sequence in context: A277017 A178498 A353422 * A357375 A133008 A102550
KEYWORD
base,sign
AUTHOR
Labos Elemer, Jun 21 2004
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 15 20:47 EDT 2024. Contains 371696 sequences. (Running on oeis4.)