login
A095229
a(1) = 1; a(n) = n multiplied by the concatenation of all previous terms.
0
1, 2, 36, 4944, 61824720, 7418966770948320, 86554612327730451932767396638240, 9891955694597765935173416758656692436898621843615462139173105920
OFFSET
1,2
COMMENTS
a(n) >= 10^(2^(n-2)-1) (can be easily shown by induction).
EXAMPLE
Let n = 4. The previous terms are 1,2 and 36. Their concatenation is 1236. This number is multiplied by 4 and we get a(4) = 4944.
MATHEMATICA
a = {1}; For[n=2, n<10, n++, AppendTo[a, n*FromDigits[Flatten[IntegerDigits[a]]]]]; a
CROSSREFS
Sequence in context: A203021 A319507 A001070 * A047832 A004003 A369676
KEYWORD
base,nonn,less
AUTHOR
Amarnath Murthy, Jun 11 2004
EXTENSIONS
Edited, corrected and extended by Stefan Steinerberger, Jun 16 2007
STATUS
approved