Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Mar 18 2024 16:46:56
%S 1,32,321,2560,18881,135072,954241,6705920,47020161,329377312,
%T 2306349761,16146574080,113032395841,791245902752,5538778714881,
%U 38771623191040,271401878897921,1899814701967392,13298707562817601,93090966886860800,651636810049438401
%N Number of 3-block covers of a labeled n-set.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (11,-31,21).
%F a(n) = (1/3!)*(11-6*3^n+7^n).
%F a(n) = 11*a(n-1)-31*a(n-2)+21*a(n-3). G.f.: -x^2*(21*x+1) / ((x-1)*(3*x-1)*(7*x-1)). - _Colin Barker_, Jul 12 2013
%F a(n) = sum(i=0..n, (-1)^i * C(n,i) * C(2^(n-i)-1,3) ). - _Geoffrey Critzer_, Aug 24 2014
%p seq((11-6*3^n+7^n)/6, n=2..50); # _Robert Israel_, Aug 25 2014
%t nn = 19; Table[Sum[(-1)^i Binomial[n, i] Binomial[2^(n - i) - 1, 3], {i, 0, n}], {n, 2, nn}] (* _Geoffrey Critzer_, Aug 24 2014 *)
%t Table[(11 - 6*3^n + 7^n)/6, {n, 2, 20}] (* _Wesley Ivan Hurt_, Aug 26 2014 *)
%o (Magma) [(11-6*3^n+7^n)/6 : n in [2..30]]; // _Wesley Ivan Hurt_, Aug 26 2014
%Y Column of A055154.
%K easy,nonn
%O 2,2
%A _Vladeta Jovovic_, May 31 2004
%E More terms from _Colin Barker_, Jul 12 2013