login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094856
E.g.f.: exp(4x)/(1-4x)^(1/4).
6
1, 5, 29, 217, 2297, 34349, 674965, 16276481, 461527793, 14993138773, 548258687501, 22272738733865, 994870668959209, 48451779617935997, 2554818339078836357, 144990720049391354449, 8811240401831517313505, 570857963393730507892901, 39275973938444154366908413
OFFSET
0,2
COMMENTS
Sum_{k = 0..n} A046716(n,k)*x^k give A000522(n), A081367(n), A094822(n) for x = 1, 2, 3 respectively.
LINKS
FORMULA
a(n) = Sum_{k = 0..n} A046716(n, k)*4^k.
a(n) ~ n^(n-1/4)*4^n*Gamma(3/4)/(exp(n-1)*sqrt(Pi)). - Vaclav Kotesovec, Oct 03 2012
Conjectured to be D-finite with recurrence: a(n) +(-4*n-1)*a(n-1) +16*(n-1)*a(n-2)=0. - R. J. Mathar, Nov 15 2019
MATHEMATICA
Table[n!*SeriesCoefficient[E^(4x)/(1-4x)^(1/4), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 03 2012 *)
With[{nn=20}, CoefficientList[Series[Exp[4x]/(1-4x)^(1/4), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Mar 29 2013 *)
PROG
(PARI) x='x+O('x^66); Vec(serlaplace(exp(4*x)/(1-4*x)^(1/4))) \\ Joerg Arndt, May 11 2013
CROSSREFS
Sequence in context: A356408 A192463 A243952 * A057623 A356336 A352294
KEYWORD
nonn
AUTHOR
Philippe Deléham, Jun 13 2004
EXTENSIONS
Corrected and extended by Harvey P. Dale, Mar 29 2013
STATUS
approved