%I #6 Sep 26 2021 14:04:02
%S 0,0,1,4,1,3,1,2,1,2,4,2,4,2,4,2,1,2,1,3,1,2,1,5,1,2,3,2,3,5,3,3,3,2,
%T 3,2,1,2,1,2,1,2,1,3,1,1,1,3,1,4,2,3,2,3,2,2,2,1,2,4,2,3,2,1,1,1,1,6,
%U 1,4,1,2,1,3,1,1,1,3,1,4,1,1,2,3,2,4,2,3,2,3,2,5,2,5,2,2,2,4,2,1,4,3,4,2,4
%N Number of primes in the trajectory of n under the juggler map of A094683.
%e 3 -> 5 -> 11 -> 36 -> 6 -> 2 -> 1, so in this trajectory 3, 5, 11 and 2 are primes, hence a(3) = 4.
%t Table[Count[NestWhileList[If[EvenQ[#],Floor[Sqrt[#]],Floor[(Sqrt[#])^3]]&,n,#>1&],_?PrimeQ],{n,0,120}] (* _Harvey P. Dale_, Sep 26 2021 *)
%K easy,nonn
%O 0,4
%A _Jason Earls_, Jun 11 2004