

A094744


Rearrangement of primes so that sum of the absolute value of the successive differences is also a prime.


3



2, 5, 3, 11, 7, 13, 19, 17, 23, 29, 47, 37, 67, 31, 43, 41, 53, 71, 59, 89, 61, 73, 79, 103, 83, 101, 107, 97, 109, 139, 127, 157, 131, 137, 113, 149, 167, 151, 163, 181, 193, 173, 197, 179, 191, 227, 251, 211, 277, 229, 271, 223, 307, 239, 263, 199, 241, 283, 257
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The smallest previously unused prime consistent with the definition is used at each step.  Franklin T. AdamsWatters, Oct 09 2006


LINKS



EXAMPLE

52 = 3 is prime, (52)+ (53) = 5 is a prime,(52)+(53)+(113) = 13 is a prime.


MAPLE

N:= 10000: # to use primes up to N
A[1]:= 2:
P:= select(isprime, [seq(i, i=3..N, 2)]):
s:= 0:
for n from 2 do
for i from 1 to nops(P) do
if isprime(s + abs(P[i]A[n1])) then
s:= s+abs(P[i]A[n1]);
A[n]:= P[i];
P:= subsop(i=NULL, P);
break
fi
od;
if not assigned(A[n]) then break fi;
od:


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



