OFFSET
0,1
COMMENTS
Decimal expansion of sigma(1|1,i)/2, where sigma is the Weierstrass sigma function and 1 and i are the half-periods. - Eric W. Weisstein, Jan 15 2005
Known to be transcendental. - Benoit Cloitre, Jan 07 2006
Called "Weierstrass constant" after the German mathematician Karl Theodor Wilhelm Weierstrass (1815-1897). - Amiram Eldar, Jun 24 2021
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 6.1, p. 421.
Michel Waldschmidt, Elliptic functions and transcendance, Surveys in number theory, 143-188, Dev. Math., 17, Springer, New York, 2008.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
Simon Plouffe, 2**(5/4)*sqrt(Pi)*exp(Pi/8)*GAMMA(1/4)**(-2).
Michel Waldschmidt, Elliptic Functions and Transcendence, preprint, Corollary 49.
Eric Weisstein's World of Mathematics, Weierstrass Constant.
FORMULA
c = 2^(5/4)*Pi^(1/2)*exp(Pi/8)/Gamma(1/4)^2.
EXAMPLE
0.474949379987920650332...
MATHEMATICA
RealDigits[2^(5/4) Sqrt[Pi] E^(Pi/8)/Gamma[1/4]^2, 10, 111][[1]]
RealDigits[N[WeierstrassSigma[1, WeierstrassInvariants[{1, I}]]/2, 100], 10][[1]] (* Eric W. Weisstein, Apr 16 2018 *)
PROG
(PARI) 2^(5/4)*Pi^(1/2)*exp(Pi/8)/gamma(1/4)^2 \\ Benoit Cloitre, Jan 07 2006
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
Robert G. Wilson v, May 19 2004
EXTENSIONS
Edited by N. J. A. Sloane, Aug 19 2008 at the suggestion of R. J. Mathar
STATUS
approved