login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094678
a(n) = A003474(n)/n.
1
1, 2, 6, 8, 32, 54, 208, 256, 1458, 2560, 10648, 17496, 70304, 151424, 629856, 819200, 5064320, 9565938, 40781104, 65536000, 331619184, 623589472, 2728756984, 3673320192, 22315420160, 32127240704, 188286357654, 321009188864, 1577709824480, 2975389355520, 13283298844816, 17626562560000
OFFSET
1,2
COMMENTS
Number of normal bases for GF(3^n) over GF(3). - Joerg Arndt, Jul 03 2011
For n>=2, a(n) = f(n)/(2^(n-1)) where f(n) is the number of Hamiltonian cycles in the 3-ary de Bruijn graph (i.e., graph with 3*n nodes {0..3*n-1} and edges from each i to 3*i (mod 3*n), 3*i+1 (mod 3*n), and 3*i+2 (mod 3*n); cf. A192513). - Joerg Arndt, Jul 03 2011.
For details on this correspondence, see A192513. - Dmitrii Pasechnik, Dec 07 2014
MATHEMATICA
p = 3; numNormalp[n_] := Module[{r, i, pp = 1}, Do[r = MultiplicativeOrder[p, d]; i = EulerPhi[d]/r; pp *= (1 - 1/p^r)^i, {d, Divisors[n]}]; Return[pp]];
a[1] = 1; a[n_] := Module[{t = 1, q = n, pp}, While[0 == Mod[q, p], q /= p; t += 1]; pp = numNormalp[q]; pp *= p^n/n; Return[pp]];
Array[a, 40] (* Jean-François Alcover, Jul 22 2018, after Joerg Arndt *)
PROG
(PARI) a(n)=if(n==1, return(1)); my(r, i, t=3^n/n); fordiv(n/3^valuation(n, 3), d, r=znorder(Mod(3, d)); i=eulerphi(d)/r; t*=(1-1/3^r)^i); t \\ Charles R Greathouse IV, Jan 03 2013
CROSSREFS
Sequence in context: A075999 A096999 A019199 * A076507 A117542 A045653
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Jun 07 2004
EXTENSIONS
Terms > 5064320 by Joerg Arndt, Jul 03 2011
STATUS
approved