login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A094536
Number of binary words of length n that are not "bifix-free".
10
0, 0, 2, 4, 10, 20, 44, 88, 182, 364, 740, 1480, 2980, 5960, 11960, 23920, 47914, 95828, 191804, 383608, 767500, 1535000, 3070568, 6141136, 12283388, 24566776, 49135784, 98271568, 196547560, 393095120, 786199088, 1572398176, 3144813974
OFFSET
0,3
COMMENTS
Also the number of binary strings of length n that begin with an even length palindrome. (E.g., f(4) = 10 with strings 0000 0001 0010 0011 0110 1001 1100 1101 1110 1111.) - Peter Kagey, Jan 11 2015
The probability that a random, infinite binary string begins with an even-length palindrome is: lim n -> infinity a(n)/2^n ~ 0.7322131597821108... . - Peter Kagey, Jan 26 2015
FORMULA
a(n) = 2^n - A003000(n).
Let b(0)=1; b(n) = 2*b(n-1) - 1/2*(1+(-1)^n)*b([n/2]); a(n) = 2^n - b(n). - Farideh Firoozbakht, Jun 10 2004
a(0) = 0; a(1) = 0; a(2*n+1) = 2*a(2*n); a(2*n) = 2*a(2*n-1) + 2^n - a(n). - Peter Kagey, Jan 11 2015
G.f. g(x) satisfies (1-2*x)*g(x) = 2*x^2/(1-2*x^2) - g(x^2). - Robert Israel, Jan 12 2015
MAPLE
a[0]:= 0:
for n from 1 to 100 do
if n::odd then a[n]:= 2*a[n-1]
else a[n]:= 2*a[n-1] + 2^(n/2) - a[n/2]
fi
od:
seq(a[i], i=0..100); # Robert Israel, Jan 12 2015
MATHEMATICA
b[0]=1; b[n_]:=b[n]=2*b[n-1]-(1+(-1)^n)/2*b[Floor[n/2]]; a[n_]:=2^n-b[n]; Table[a[n], {n, 0, 34}]
PROG
(Ruby)
s = [0, 0]
(2..N).each { |n| s << 2 * s[-1] + (n.odd? ? 0 : 2**(n/2) - s[n/2]) }
CROSSREFS
See A003000 for much more information.
Cf. A094537.
A254128(n) gives the number of binary strings of length n that begin with an odd-length palindrome.
Sequence in context: A325508 A238439 A121880 * A323445 A307768 A370583
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 06 2004
EXTENSIONS
More terms from Farideh Firoozbakht, Jun 10 2004
Corrected by Don Rogers (donrogers42(AT)aol.com), Feb 15 2005
STATUS
approved