OFFSET
0,3
COMMENTS
Also the number of binary strings of length n that begin with an even length palindrome. (E.g., f(4) = 10 with strings 0000 0001 0010 0011 0110 1001 1100 1101 1110 1111.) - Peter Kagey, Jan 11 2015
The probability that a random, infinite binary string begins with an even-length palindrome is: lim n -> infinity a(n)/2^n ~ 0.7322131597821108... . - Peter Kagey, Jan 26 2015
LINKS
Peter Kagey, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = 2^n - A003000(n).
Let b(0)=1; b(n) = 2*b(n-1) - 1/2*(1+(-1)^n)*b([n/2]); a(n) = 2^n - b(n). - Farideh Firoozbakht, Jun 10 2004
a(0) = 0; a(1) = 0; a(2*n+1) = 2*a(2*n); a(2*n) = 2*a(2*n-1) + 2^n - a(n). - Peter Kagey, Jan 11 2015
G.f. g(x) satisfies (1-2*x)*g(x) = 2*x^2/(1-2*x^2) - g(x^2). - Robert Israel, Jan 12 2015
MAPLE
a[0]:= 0:
for n from 1 to 100 do
if n::odd then a[n]:= 2*a[n-1]
else a[n]:= 2*a[n-1] + 2^(n/2) - a[n/2]
fi
od:
seq(a[i], i=0..100); # Robert Israel, Jan 12 2015
MATHEMATICA
b[0]=1; b[n_]:=b[n]=2*b[n-1]-(1+(-1)^n)/2*b[Floor[n/2]]; a[n_]:=2^n-b[n]; Table[a[n], {n, 0, 34}]
PROG
(Ruby)
s = [0, 0]
(2..N).each { |n| s << 2 * s[-1] + (n.odd? ? 0 : 2**(n/2) - s[n/2]) }
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 06 2004
EXTENSIONS
More terms from Farideh Firoozbakht, Jun 10 2004
Corrected by Don Rogers (donrogers42(AT)aol.com), Feb 15 2005
STATUS
approved