login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A094148
Decimal expansion of log(3)/log(4).
20
7, 9, 2, 4, 8, 1, 2, 5, 0, 3, 6, 0, 5, 7, 8, 0, 9, 0, 7, 2, 6, 8, 6, 9, 4, 7, 1, 9, 7, 3, 9, 0, 8, 2, 5, 4, 3, 7, 9, 9, 0, 7, 2, 0, 3, 8, 4, 6, 2, 4, 0, 5, 3, 0, 2, 2, 7, 8, 7, 6, 3, 2, 7, 2, 7, 0, 5, 4, 9, 1, 1, 3, 8, 9, 7, 1, 7, 9, 2, 8, 1, 2, 6, 1, 1, 4, 0, 2, 3, 7, 4, 5, 9, 0, 4, 4, 1, 2, 1, 0, 4, 5, 4, 9
OFFSET
0,1
COMMENTS
Gelfond showed abs( sup{ x in R} sum(0<=n<N, (-1)^t(n)*exp(i*x*n) ) <=C*N^(log(3)/log(4)) where t(n) is the Thue-Morse sequence and the exponent log(3)/log(4) is optimal.
REFERENCES
J.-P. Allouche & J. Shallit, Automatic sequences, Cambridge University Press, 2003, p 122
FORMULA
Equals Integral_{x=1..oo} 1/(2^x - 2^(-x)) dx. - Amiram Eldar, Jul 16 2020
EXAMPLE
0.79248125036057...
MATHEMATICA
RealDigits[Log[4, 3], 10, 100][[1]] (* Vincenzo Librandi, Aug 30 2013 *)
PROG
(PARI) log(3)/log(4) \\ Charles R Greathouse IV, May 09 2016
CROSSREFS
Cf. A010060.
Cf. decimal expansion of log_4(m): this sequence, A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), A154909 (m=18), A155004 (m=19), A155183 (m=20), A155545 (m=21), A155695 (m=22), A155818 (m=23), A155936 (m=24).
Sequence in context: A243991 A021852 A154197 * A154215 A316246 A249546
KEYWORD
cons,nonn
AUTHOR
Benoit Cloitre, Jun 08 2004
STATUS
approved