|
|
A094148
|
|
Decimal expansion of log(3)/log(4).
|
|
20
|
|
|
7, 9, 2, 4, 8, 1, 2, 5, 0, 3, 6, 0, 5, 7, 8, 0, 9, 0, 7, 2, 6, 8, 6, 9, 4, 7, 1, 9, 7, 3, 9, 0, 8, 2, 5, 4, 3, 7, 9, 9, 0, 7, 2, 0, 3, 8, 4, 6, 2, 4, 0, 5, 3, 0, 2, 2, 7, 8, 7, 6, 3, 2, 7, 2, 7, 0, 5, 4, 9, 1, 1, 3, 8, 9, 7, 1, 7, 9, 2, 8, 1, 2, 6, 1, 1, 4, 0, 2, 3, 7, 4, 5, 9, 0, 4, 4, 1, 2, 1, 0, 4, 5, 4, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Gelfond showed abs( sup{ x in R} sum(0<=n<N, (-1)^t(n)*exp(i*x*n) ) <=C*N^(log(3)/log(4)) where t(n) is the Thue-Morse sequence and the exponent log(3)/log(4) is optimal.
|
|
REFERENCES
|
J.-P. Allouche & J. Shallit, Automatic sequences, Cambridge University Press, 2003, p 122
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for transcendental numbers
|
|
FORMULA
|
Equals Integral_{x=1..oo} 1/(2^x - 2^(-x)) dx. - Amiram Eldar, Jul 16 2020
|
|
EXAMPLE
|
0.79248125036057...
|
|
MATHEMATICA
|
RealDigits[Log[4, 3], 10, 100][[1]] (* Vincenzo Librandi, Aug 30 2013 *)
|
|
PROG
|
(PARI) log(3)/log(4) \\ Charles R Greathouse IV, May 09 2016
|
|
CROSSREFS
|
Cf. A010060.
Cf. decimal expansion of log_4(m): this sequence, A153201 (m=5), A153460 (m=6), A153615 (m=7), A154155 (m=10), A154176 (m=11), A154197 (m=12), A154224 (m=13), A154464 (m=14), A154543 (m=15), A154849 (m=17), A154909 (m=18), A155004 (m=19), A155183 (m=20), A155545 (m=21), A155695 (m=22), A155818 (m=23), A155936 (m=24).
Sequence in context: A243991 A021852 A154197 * A154215 A316246 A249546
Adjacent sequences: A094145 A094146 A094147 * A094149 A094150 A094151
|
|
KEYWORD
|
cons,nonn
|
|
AUTHOR
|
Benoit Cloitre, Jun 08 2004
|
|
STATUS
|
approved
|
|
|
|