login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A094133 Leyland primes: 3, together with primes of form x^y + y^x, for x>y>1. 19
3, 17, 593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600193, 4318114567396436564035293097707729426477458833, 5052785737795758503064406447721934417290878968063369478337 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Contains A061119 as a subsequence.

LINKS

Charles R Greathouse IV and Hans Havermann (Charles R Greathouse IV to 49), Table of n, a(n) for n = 1..100

Ed Copeland and Brady Haran, Leyland Numbers - Numberphile (2014)

Hans Havermann, Table of n (where known), Leyland index, number of digits in decimal representation, and (x,y) pair for all known solutions

A. Kulsha, The XYYXF project - Primes and PRPs.

P. Leyland, Primes and PRPs of the form x^y + y^x

EXAMPLE

2^1+1^2, 3^2+2^3, 9^2+2^9, 15^2+2^15, 21^2+2^21, 33^2+2^33, 24^5+5^24, 56^3+3^56, 32^15+15^32, 54^7+7^54, 38^33+33^38.

MAPLE

N:= 10^100: # to get all terms <= N

A:= {3}:

for n from 2 while 2*n^n < N do

  for k from n+1 do if igcd(n, k)=1 then

     a:= n^k + k^n;

     if a > N then break fi;

     if isprime(a) then A:= A union {a} fi fi;

  od

od:

A; # if using Maple 11 or earlier, uncomment the next line

# sort(convert(A, list)); # Robert Israel, Apr 13 2015

MATHEMATICA

a = {3}; Do[Do[k = m^n + n^m; If[PrimeQ[k], AppendTo[a, k]], {m, 2, n}], {n, 2, 100}]; Union[a] (* Artur Jasinski *)

PROG

(PARI) f(x)=my(L=log(x)); L/lambertw(L) \\ finds y such that y^y == x

list(lim)=my(v=List()); for(x=2, f(lim/2), my(y=x+1, t); while((t=x^y+y^x)<=lim, if(ispseudoprime(t), listput(v, t)); y+=2)); Set(v) \\ Charles R Greathouse IV, Oct 28 2014

CROSSREFS

Cf. A061119 (primes where one of x,y is 2), A064539 (non-2 values where one of x,y is 2), A253471 (non-3 values where one of x,y is 3), A073499 (subset listing y where x = y+1), A076980 (Leyland numbers).

Sequence in context: A128300 A001601 A061119 * A049985 A126579 A270816

Adjacent sequences:  A094130 A094131 A094132 * A094134 A094135 A094136

KEYWORD

nonn

AUTHOR

Lekraj Beedassy, May 04 2004

EXTENSIONS

Corrected and extended by Jens Kruse Andersen, Oct 26 2007

Edited by Hans Havermann, Apr 10 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 21:14 EST 2016. Contains 278745 sequences.