login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093998
Number of partitions of n with an even number of distinct Fibonacci parts.
4
1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 2, 1, 2, 1, 2, 1, 0, 2, 2, 2, 2, 1, 2, 2, 1, 3, 1, 1, 2, 1, 2, 2, 2, 3, 1, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 1, 3, 2, 2, 2, 1, 2, 2, 2, 4, 1, 3, 3, 1, 4, 3, 3, 3, 1, 3, 3, 2, 4, 2, 3, 3, 1, 4, 2, 2, 4, 2, 3, 3, 2, 3, 2, 2, 3, 0, 2, 3, 2, 4, 2, 4, 3, 1, 5, 3, 3, 4, 2, 4, 4, 3
OFFSET
0,12
LINKS
F. Ardila, The coefficients of a Fibonacci power series, Fib. Quart. 42 (3) (2004), 202-204.
N. Robbins, Fibonacci partitions, Fib. Quart. 34 (4) (1996), 306-313.
J. Shallit, Robbins and Ardila meet Berstel, Arxiv preprint arXiv:2007.14930 [math.CO], 2020.
FORMULA
G.f.: (Product_{k>=2} (1 + x^{F_k}) + Product_{k>=2} (1 - x^{F_k}))/2.
MAPLE
F:= combinat[fibonacci]:
b:= proc(n, i, t) option remember; `if`(n=0, t, `if`(i<2, 0,
b(n, i-1, t)+`if`(F(i)>n, 0, b(n-F(i), i-1, 1-t))))
end:
a:= proc(n) local j; for j from ilog[(1+sqrt(5))/2](n+1)
while F(j+1)<=n do od; b(n, j, 1)
end:
seq(a(n), n=0..100); # Alois P. Heinz, Jul 11 2013
MATHEMATICA
Take[ CoefficientList[ Expand[ Product[1 + x^Fibonacci[k], {k, 2, 13}]/2 + Product[1 - x^Fibonacci[k], {k, 2, 13}]/2], x], 105] (* Robert G. Wilson v, May 29 2004 *)
CROSSREFS
Sequence in context: A225089 A262436 A336499 * A247918 A237203 A339444
KEYWORD
easy,nonn
AUTHOR
N. Sato, May 24 2004
EXTENSIONS
Edited and extended by Robert G. Wilson v, May 29 2004
STATUS
approved