login
A093679
Sequence contains no 3-term arithmetic progression, starting with 1, 10.
10
1, 10, 11, 13, 14, 20, 22, 23, 28, 37, 38, 40, 41, 47, 49, 50, 82, 91, 92, 94, 95, 101, 103, 104, 109, 118, 119, 121, 122, 128, 130, 131, 244, 253, 254, 256, 257, 263, 265, 266, 271, 280, 281, 283, 284, 290, 292, 293, 325, 334, 335, 337, 338, 344, 346, 347
OFFSET
1,2
COMMENTS
a(1)=1, a(2)=10; a(n) is least k such that no three terms of a(1), a(2), ..., a(n-1), k form an arithmetic progression.
FORMULA
a(n) = (Sum_{k=1..n-1} (3^A007814(k) + 1)/2) + f(n), with f(n) an 8-periodic function with values {1, 9, 8, 9, 5, 10, 10, 10, ...}, n >= 1, as proved by Lawrence Sze.
CROSSREFS
Row 4 of array in A093682.
Sequence in context: A047791 A253610 A302578 * A153194 A175224 A106439
KEYWORD
nonn
AUTHOR
Ralf Stephan, Apr 09 2004
STATUS
approved