login
A093447
Triangle a(n,k) read by rows n which contain columns k=1,2,..,n, where each entry is the product of numbers (k-1)*n-T(k-2)+1 through k*n-T(k-1).
2
1, 2, 3, 6, 20, 6, 24, 210, 72, 10, 120, 3024, 1320, 182, 15, 720, 55440, 32760, 4896, 380, 21, 5040, 1235520, 1028160, 175560, 13800, 702, 28, 40320, 32432400, 39070080, 7893600, 657720, 32736, 1190, 36, 362880, 980179200, 1744364160
OFFSET
1,2
COMMENTS
This is built by starting from the sequence 1,2,....,T(n) in row n, where T(n) is the triangular number A000217(n) and packaging its first n, the next n-1, the next n-2,... up to the last number in groups and writing down the product of each group in one cell of the triangle. The first column is A000142. The second column is essentially A006963. The 3rd column is essentially A001763. The diagonal is A000217. - R. J. Mathar, Jul 26 2007
FORMULA
a(n,k)= [k*n-T(k-1)]!/[(k-1)*n-T(k-2)]! where T(n)=A000217(n). - R. J. Mathar, Jul 26 2007
EXAMPLE
In factorized notation the triangle starts
1;
1*2, 3;
1*2*3, 4*5, 6;
1*2*3*4, 5*6*7, 8*9, 10;
1*2*3*4*5, 6*7*8*9, 10*11*12, 13*14, 15;
which gives
1;
2, 3;
6, 20, 6;
24, 210, 72, 10;
120, 3024, 1320, 182, 15;
720,55440,32760, 4896, 380, 21;
MAPLE
A000217 := proc(n) n*(n+1)/2 ; end: A093447 := proc(n, k) factorial(k*n-A000217(k-1))/factorial((k-1)*n-A000217(k-2)) ; end: for n from 1 to 16 do for k from 1 to n do printf("%d, ", A093447(n, k)) ; od ; od: # R. J. Mathar, Jul 26 2007
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Amarnath Murthy, Apr 02 2004
EXTENSIONS
More terms from R. J. Mathar, Jul 26 2007
STATUS
approved