login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093429
Number of distinct prime factors of (prime(1)*...*prime(n))+(prime(n+1)*...*prime(2n)), where prime(n) is the n-th prime.
1
1, 1, 1, 1, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 4, 3, 2, 6, 3, 4, 4, 3, 1, 1, 3, 3, 3, 3, 2, 4, 3, 3, 3, 3, 5, 4, 2, 3, 3, 5, 3, 7, 4, 1, 4, 3, 4, 3, 6, 2, 4, 3, 3
OFFSET
1,5
COMMENTS
Prime for n = 1, 2, 3, 4, 24, 25, 45, 59 and no more for n < 100 (A329532).
LINKS
Cashogor, Payam Samidoost, David Cleaver, Jens Kruse Andersen, Creating Primes, digest of 9 messages in primeforms Yahoo group, May 12, 2004. [Cached copy]
FORMULA
a(n) = A001221(A002110(n) + A002110(2*n) / A002110(n)). - Daniel Suteu, Nov 26 2019
EXAMPLE
a(31)=4 because 509102378439545188849067644696085192959414195658632710736111053092210207
= 3711597629 * 238694867020723 * 226814268663739929299 * 2533557617597929944840907379.
MATHEMATICA
PrimeFactors[n_] := Flatten[ Table[ # [[1]], {1} ] & /@ FactorInteger[n]]; f[n_] := Length[ PrimeFactors[ Product[Prime[i], {i, n}] + Product[Prime[i + n], {i, n}]]]; Table[ f[n], {n, 20}]
PROG
(PARI) a(n) = omega(prod(k=1, n, prime(k)) + prod(k=n+1, 2*n, prime(k))); \\ Daniel Suteu, Nov 26 2019
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jason Earls, May 12 2004
EXTENSIONS
a(40)-a(48) from Robert G. Wilson v, May 27 2004
a(49)-a(54) from Daniel Suteu, Nov 26 2019
STATUS
approved