login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes of the form 70*R_k + 1, where R_k is the repunit (A002275) of length k.
8

%I #22 Jul 01 2022 18:03:34

%S 71,7777777777771,77777777777777777771,77777777777777777777771,

%T 7777777777777777777777777777771,

%U 7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777771

%N Primes of the form 70*R_k + 1, where R_k is the repunit (A002275) of length k.

%C Primes of the form (7*10^k - 61)/9. - _Vincenzo Librandi_, Nov 16 2010

%C The next term (a(7)) has 241 digits. - _Harvey P. Dale_, Jul 01 2022

%H Makoto Kamada, <a href="https://stdkmd.net/nrr/7/77771.htm#prime">Prime numbers of the form 77...771</a>.

%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>

%F a(n) = (70*10^A056688(n) - 61)/9 = (7*10^A099419(n) - 61)/9.

%t Select[Table[FromDigits[PadLeft[{1},n,7]],{n,100}],PrimeQ] (* _Harvey P. Dale_, Jul 01 2022 *)

%Y Cf. A002275, A056688 (corresponding k), A099419.

%K nonn

%O 1,1

%A _Rick L. Shepherd_, Mar 27 2004

%E Edited by _Ray Chandler_, Mar 06 2012