login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of q^(-1/2) * (eta(q^4) / eta(q))^4 in powers of q.
19

%I #31 Mar 12 2021 22:24:42

%S 1,4,14,40,101,236,518,1080,2162,4180,7840,14328,25591,44776,76918,

%T 129952,216240,354864,574958,920600,1457946,2285452,3548550,5460592,

%U 8332425,12614088,18953310,28276968,41904208,61702876,90304598

%N Expansion of q^(-1/2) * (eta(q^4) / eta(q))^4 in powers of q.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%D A. Cayley, An Elementary Treatise on Elliptic Functions, 2nd ed, 1895, p. 381, Section 488.

%H Seiichi Manyama, <a href="/A093160/b093160.txt">Table of n, a(n) for n = 0..10000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k - 1)))^4.

%F Expansion of q^(-1/2) * k / (4 * k') in powers of q where q is Jacobi's nome and k is the elliptic modulus.

%F Expansion of q^(-1/4) * k^(1/2) / (2 * (1 - k)) in powers of q^(1/2) where q is Jacobi's nome and k is the elliptic modulus.

%F Expansion of (psi(x^2) / phi(-x))^2 = (psi(x) / phi(-x^2))^4 = (psi(-x) / phi(-x))^4 = (psi(x^2) / psi(-x))^4 = (chi(x) / chi(-x^2)^2)^4 = ( chi(x) * chi(-x)^2)^-4 = (chi(-x) * chi(-x^2))^-4 = (f(-x^4) / f(-x))^4 in powers of x where phi(), psi(), chi(), f() are Ramanujan theta functions.

%F Euler transform of period 4 sequence [ 4, 4, 4, 0, ...].

%F Given g.f. A(x), then B(x) = q * A(q^2) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = u^2 - v - 16*u*v - 16*v^2 - 256*u*v^2.

%F G.f. A(q) satisfies A(q) = sqrt(A(-q^2)) / (1 - 4*q*A(-q^2)); together with limit_{n->infinity} A(x^n) = 1 this gives a fast algorithm to compute the series. [_Joerg Arndt_, Aug 06 2011]

%F A001938(n) = (-1)^n * a(n). Convolution inverse of A112143.

%F a(n) ~ exp(sqrt(2*n)*Pi) / (32 * 2^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Sep 07 2015

%F a(0) = 1, a(n) = (4/n)*Sum_{k=1..n} A046897(k)*a(n-k) for n > 0. - _Seiichi Manyama_, Apr 28 2017

%e G.f. = 1 + 4*x + 14*x^2 + 40*x^3 + 101*x^4 + 236*x^5 + 518*x^6 + 1080*x^7 + ...

%e G.f. = q + 4*q^3 + 14*q^5 + 40*q^7 + 101*q^9 + 236*q^11 + 518*q^13 + ...

%t a[ n_] := SeriesCoefficient[ (Product[ 1 + x^k, {k, 2, n, 2}] / Product[ 1 - x^k, {k, 1, n, 2}])^4, {x, 0, n}];

%t a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ Sqrt[m] / (4 Sqrt[1 - m]), {q, 0, n + 1/2}]];

%t a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ m^(1/4) / (2 (1 - Sqrt @ m)), {q, 0, n/2 + 1/4 }]];

%t s = (QPochhammer[q^4]/QPochhammer[q])^4 + O[q]^30; CoefficientList[s, q] (* _Jean-François Alcover_, Nov 24 2015 *)

%o (PARI) {a(n) = my(A, A2, m); if( n<0, 0, A = x + O(x^2); m=1; while( m<=n, m*=2; A = subst(A, x, x^2); A2 = A * (1 + 16*A); A = 8*A2 + (1 + 32*A) * sqrt(A2)); polcoeff( sqrt(A/x), n))};

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A) / eta(x + A))^4, n))};

%Y Cf. A001938, A112143, A285927, A285928.

%K nonn,easy

%O 0,2

%A _Michael Somos_, Mar 26 2004, Apr 17 2007