

A093058


Numbers k such that numerator of Bernoulli(2k) is divisible by the square of 59, the second irregular prime.


0



457, 1298, 2168, 3009, 3481, 3879, 4720, 5590, 6431, 6962, 7301, 8142, 9012, 9853, 10443, 10723, 11564, 12434, 13275, 13924, 14145, 14986, 15856, 16697, 17405, 17567, 18408
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..27.
Eric Weisstein's World of Mathematics, Bernoulli Number.


FORMULA

If we omit multiples of 3481 and take first differences, it appears that we get a common difference of {841, 870} repeated.


MATHEMATICA

Select[ Range[ 9695], Mod[ Numerator[ BernoulliB[2# ]], 59^2] == 0 &]


CROSSREFS

Cf. A000928, A091216, A092221.
Sequence in context: A142828 A020364 A337847 * A201257 A252400 A252399
Adjacent sequences: A093055 A093056 A093057 * A093059 A093060 A093061


KEYWORD

nonn


AUTHOR

Robert G. Wilson v, Feb 26 2004


EXTENSIONS

More terms from Eric W. Weisstein, Mar 19 2004


STATUS

approved



