login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092931
Number of ways of factorizing n into parts whose sum divides n.
2
0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 2
OFFSET
1,4
COMMENTS
Most of the terms are 1. But there are infinitely many terms for which a(n) >1. Example: a(n^n) >= 2, two such factorizations being n^n and n*n*n... n times, e.g. a(27) = 2 from 27, 3*3*3.
For any prime p the only factorization of p is p, which sums to p, which divides p, hence a(p) = 1. For the square of any positive even number e = 2*k we have e^2 = (2*k)^2 = 4*k^2; since we can factor e^2 as (2*k)*(2*k) whose factors sum to 4*k and 4*k | 4*k^2, we have a((2*k)^2) >= 2. For any odd semiprime s = p*q, s in A046315, we have p+q is even, hence p+q cannot divide p*q, hence a(p*q) = 1. For any even semiprime s > 4, s in A100484, we have s = 2*p for an odd prime p, hence 2+p is odd an cannot divide either 2 nor p, so a(2*p) = 1. See also: A016742 Even squares: (2n)^2. - Jonathan Vos Post, Mar 21 2006
REFERENCES
Amarnath Murthy, "Generalization of partition function, introducing Smarandache Factor partition", Smarandache Notions Journal, Vol. 11, 1-2-3, 2000.
LINKS
Richard J Mathar, Maple program
EXAMPLE
a(1) = 0. The only factorization of 1 is the empty multiset, whose sum is 0 and that does not divide 1.
a(16) = 4, the factorizations of 16 are 16, 8*2, 4*4, 4*2*2, 2*2*2*2. In four of them, all except 8*2, the sum of the parts divides 16.
a(30) = 2 because (besides 30 itself) we have 30 = 2 * 3 * 5 and 2 + 3 + 5 = 10 which divides 30.
a(100) = 3 from 100 = 5*20 = 10*10.
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Mar 20 2004
EXTENSIONS
More terms from Jonathan Vos Post, Mar 21 2006
More terms from Franklin T. Adams-Watters, Jun 12 2006
a(100) corrected by N. J. A. Sloane, Nov 23 2007
STATUS
approved