This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A092865 Nonzero elements in Klee's identity Sum[(-1)^k binomial[n,k]binomial[n+k,m],{k,0,n}] == (-1)^n binomial[n,m-n]. 9
 1, -1, -1, 1, 2, -1, 1, -3, 1, -3, 4, -1, -1, 6, -5, 1, 4, -10, 6, -1, 1, -10, 15, -7, 1, -5, 20, -21, 8, -1, -1, 15, -35, 28, -9, 1, 6, -35, 56, -36, 10, -1, 1, -21, 70, -84, 45, -11, 1, -7, 56, -126, 120, -55, 12, -1, -1, 28, -126, 210, -165, 66, -13, 1, 8, -84, 252, -330, 220, -78, 14, -1, 1, -36, 210, -462, 495 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Triangle, with zeros omitted, given by (0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (-1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 26 2011 Aside from signs and index shift, the coefficients of the characteristic polynomial of the Coxeter adjacency matrix for the Coxeter group A_n related to the Chebyshev polynomial of the second kind (cf. Damianou link p. 19). - Tom Copeland, Oct 11 2014 LINKS H.-H. Chern, H.-K. Hwang, T.-H. Tsai, Random unfriendly seating arrangement in a dining table, arXiv preprint arXiv:1406.0614 [math.PR], 2014 T. Copeland, Addendum to Elliptic Lie Triad P. Damianou, On the characteristic polynomials of Cartan matrices and Chebyshev polynomials, arXiv preprint arXiv:1110.6620 [math.RT], 2014. Eric Weisstein's World of Mathematics, Klee's Identity FORMULA G.f.: 1/(1+y*x+y*x^2). - Philippe Deléham, Feb 08 2012 EXAMPLE 1; -1; -1, 1; 2, -1; 1, -3, 1; -3, 4, -1; -1, 6, -5, 1; 4, -10, 6, -1; Triangle (0, 1, -1, 0, 0, 0, ...) DELTA (-1, 0, 0, 0, 0, ...) begins: 1 0, -1 0, -1, 1 0, 0, 2, -1 0, 0, 1, -3, 1 0, 0, 0, -3, 4, -1 0, 0, 0, -1, 6, -5, 1 ... - Philippe Deléham, Dec 26 2011 MATHEMATICA Flatten[Table[(-1)^n Binomial[n, m-n], {m, 0, 20}, {n, Ceiling[m/2], m}]] CROSSREFS All of A011973, A092865, A098925, A102426, A169803 describe essentially the same triangle in different ways. - N. J. A. Sloane, May 29 2011 Sequence in context: A308399 A287601 A035667 * A098925 A102426 A052920 Adjacent sequences:  A092862 A092863 A092864 * A092866 A092867 A092868 KEYWORD sign,tabf AUTHOR Eric W. Weisstein, Mar 07 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 12:25 EST 2019. Contains 329862 sequences. (Running on oeis4.)