Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Sep 08 2022 08:45:13
%S 1,1,1,1,2,2,2,2,4,4,4,4,6,6,6,6,9,9,9,9,12,12,12,12,16,16,16,16,20,
%T 20,20,20,25,25,25,25,30,30,30,30,36,36,36,36,42,42,42,42,49,49,49,49,
%U 56,56,56,56,64,64,64,64,72,72,72,72,81,81,81,81,90,90,90,90,100,100,100,100
%N G.f.: 1/((1-x)*(1-x^4)*(1-x^8)).
%C Number of partitions of n into parts 1, 4, and 8. - _Joerg Arndt_, Aug 10 2014
%H Vincenzo Librandi, <a href="/A092532/b092532.txt">Table of n, a(n) for n = 0..1000</a>
%H G. Nebe, E. M. Rains and N. J. A. Sloane, <a href="http://neilsloane.com/doc/cliff2.html">Self-Dual Codes and Invariant Theory</a>, Springer, Berlin, 2006.
%H <a href="/index/Mo#Molien">Index entries for Molien series</a>
%H <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, -1, 1).
%F a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=2, a(5)=2, a(6)=2, a(7)=2, a(8)=4, a(9)=4, a(10)=4, a(11)=4, a(12)=6; for n>12, a(n)=a(n-1)+a(n-4)-a(n-5)+a(n-8)- a(n-9)- a(n-12)+a (n-13). - _Harvey P. Dale_, Aug 10 2014
%t CoefficientList[Series[1/((1-x)(1-x^4)(1-x^8)),{x,0,80}],x] (* or *) LinearRecurrence[{1,0,0,1,-1,0,0,1,-1,0,0,-1,1},{1,1,1,1,2,2,2,2,4,4,4,4,6},80] (* _Harvey P. Dale_, Aug 10 2014 *)
%o (Magma) [n le 13 select Floor(Floor(1+(n+3)/4)^2/4) else Self(n-1)+Self(n-4)-Self(n-5)+Self(n-8)-Self(n-9)-Self(n-12)+Self(n-13): n in [1..100]]; // _Vincenzo Librandi_, Aug 10 2014
%K nonn,easy
%O 0,5
%A _N. J. A. Sloane_, Apr 08 2004