login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A092532
G.f.: 1/((1-x)*(1-x^4)*(1-x^8)).
1
1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 6, 6, 9, 9, 9, 9, 12, 12, 12, 12, 16, 16, 16, 16, 20, 20, 20, 20, 25, 25, 25, 25, 30, 30, 30, 30, 36, 36, 36, 36, 42, 42, 42, 42, 49, 49, 49, 49, 56, 56, 56, 56, 64, 64, 64, 64, 72, 72, 72, 72, 81, 81, 81, 81, 90, 90, 90, 90, 100, 100, 100, 100
OFFSET
0,5
COMMENTS
Number of partitions of n into parts 1, 4, and 8. - Joerg Arndt, Aug 10 2014
LINKS
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, -1, 1).
FORMULA
a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=2, a(5)=2, a(6)=2, a(7)=2, a(8)=4, a(9)=4, a(10)=4, a(11)=4, a(12)=6; for n>12, a(n)=a(n-1)+a(n-4)-a(n-5)+a(n-8)- a(n-9)- a(n-12)+a (n-13). - Harvey P. Dale, Aug 10 2014
MATHEMATICA
CoefficientList[Series[1/((1-x)(1-x^4)(1-x^8)), {x, 0, 80}], x] (* or *) LinearRecurrence[{1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, -1, 1}, {1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 6}, 80] (* Harvey P. Dale, Aug 10 2014 *)
PROG
(Magma) [n le 13 select Floor(Floor(1+(n+3)/4)^2/4) else Self(n-1)+Self(n-4)-Self(n-5)+Self(n-8)-Self(n-9)-Self(n-12)+Self(n-13): n in [1..100]]; // Vincenzo Librandi, Aug 10 2014
CROSSREFS
Sequence in context: A364932 A122461 A092533 * A073504 A092508 A032544
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 08 2004
STATUS
approved