Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #46 Sep 01 2021 13:12:34
%S 0,1,21,440,9219,193159,4047120,84796361,1776676461,37225409320,
%T 779956919259,16341869895119,342399310878240,7174043658547921,
%U 150312517518628101,3149388824232642200,65986852791366858099
%N Chebyshev polynomials S(n-1,21) with Diophantine property.
%C Sequence R_21: Starts with 0,1,21 and satisfies A*C=B^2-1 for successive A,B,C.
%C The natural numbers a(n)=n satisfy the recurrence a(n-1)*a(n+1)=a(n)^2-1. Let R_r denote the sequence starting with 0,1,r and with this recurrence. We see that R_2 = "the natural numbers" and we find R_3 = A001906. These R_r form a "family" of sequences, which coincides with the m-family (r=m-2, n -> n+1) provided by Wolfdieter Lang (see A078368). This sequence R_21 is strongly related to A041833, which gives the denominators in the continued fraction of sqrt(437).
%C All positive integer solutions of Pell equation b(n)^2 - 437*a(n)^2 = +4 together with b(n)=A097777(n), n>=0.
%C For n>=2, a(n) equals the permanent of the (n-1)X(n-1) tridiagonal matrix with 21's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - _John M. Campbell_, Jul 08 2011
%C For n>=1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,...,20}. - _Milan Janjic_, Jan 25 2015
%H Indranil Ghosh, <a href="/A092499/b092499.txt">Table of n, a(n) for n = 0..756</a>
%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (21,-1).
%F a(0)=0, a(1)=1, a(2)=21 and a(n-1)*a(n+1) = a(n)^2-1
%F a(n) = S(n-1, 21)=U(n-1, 21/2) with S(n, x)=U(n, x/2) Chebyshev's polynomials of the 2nd kind, A049310. S(-1, x)= 0 = U(-1, x).
%F a(n) = S(2*n-1, sqrt(23))/sqrt(23), n>=1.
%F a(n) = 21*a(n-1)-a(n-2), n >= 1; a(0)=0, a(1)=1.
%F a(n) = (ap^n-am^n)/(ap-am) with ap := (21+sqrt(437))/2 and am := (21-sqrt(437))/2.
%F G.f.: x/(1-21*x+x^2).
%F a(n+1) = Sum_{k, 0<=k<=n} A101950(n,k)*20^k. - _Philippe Deléham_, Feb 10 2012
%F Product {n >= 1} (1 + 1/a(n)) = 1/19*(19 + sqrt(437)). - _Peter Bala_, Dec 23 2012
%F Product {n >= 2} (1 - 1/a(n)) = 1/42*(19 + sqrt(437)). - _Peter Bala_, Dec 23 2012
%e a(3)=440 because a(1)*440 = a(2)^2-1.
%t LinearRecurrence[{21,-1},{0,1},30] (* _Harvey P. Dale_, Apr 23 2015 *)
%o (Sage) [lucas_number1(n,21,1) for n in range(0,20)] # _Zerinvary Lajos_, Jun 25 2008
%Y Cf. R_3=A001906, R_4=A001353, R_5=A004254, R_6=A001109, R_7=A004187, R_8=A001090, R_9=A018913, R_10=A004189, R_11=A004190, R_12=A004191, R_13=A078362, R_14=A007655, R_15=A078364, R_16=A077412, R_17=A078366, R_18=A049660, R_19=A078368, R_20=A075843, R_21=this, sequence, R_22=A077421. See also A041219 and A041917.
%K easy,nonn
%O 0,3
%A _Rainer Rosenthal_, Apr 05 2004
%E Extension, Chebyshev and Pell comments from _Wolfdieter Lang_, Aug 31 2004
%E Corrected by _T. D. Noe_, Nov 07 2006