The OEIS is supported by the many generous donors to the OEIS Foundation.


(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A092382 The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by ten loops is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices. 11
1, 1, 723668784231, 2827767747950, 1193097790725426305663064, 17520037013918467453246138, 7392624504986931437972335103490414473, 395235071756082109802989440265119512888, 218243704050866770455587351635302655565432102527624 (list; graph; refs; listen; history; text; internal format)



G. C. Greubel, Table of n, a(n) for n = 20..70

Saibal Mitra and Bernard Nienhuis, Osculating Random Walks on Cylinders, in Discrete Random Walks, DRW'03, Cyril Banderier and Christian Krattenthaler (eds.), Discrete Mathematics and Theoretical Computer Science Proceedings AC, pp. 259-264.

Saibal Mitra and Bernard Nienhuis, Exact conjectured expressions for correlations in the dense O(1) loop model on cylinders, arXiv:cond-mat/0407578 [cond-mat.stat-mech], 2004.

Saibal Mitra and Bernard Nienhuis, Osculating Random Walks on Cylinders, arXiv:math-ph/0312036, 2003.


Even n: Q(n, m) = C_{n/2-m}(n) + Sum_{r=1..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2-m- 2*r}(n).

Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 -m-2*r}(n) - C_{(n-1)/2 -m-2*r-1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 10).


M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}];

c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs;

Q[n_?EvenQ, m_]:= c[(n-2*m)/2, n] + Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2 -m-2*r, n], {r, (n-2*m)/4}];

Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}];

Table[Q[n, 10], {n, 20, 40}] (* G. C. Greubel, Nov 16 2019 *)


Cf. A045912, A092372, A092373, A092374, A092375, A092376, A092377, A092378, A092379, A092380, A092381.

Sequence in context: A015421 A335336 A180612 * A017411 A017531 A348204

Adjacent sequences:  A092379 A092380 A092381 * A092383 A092384 A092385




Saibal Mitra (smitra(AT)zonnet.nl), Mar 20 2004


More terms added by G. C. Greubel, Nov 16 2019



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 29 16:23 EDT 2022. Contains 357090 sequences. (Running on oeis4.)