Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Mar 03 2023 17:14:36
%S 1,7,11,13,19,21,25,31,35,37,41,47,49,55,59,61,67,69,73,79,81,87,91,
%T 93,97,103,107,109,115,117,121,127,131,133,137,143,145,151,155,157,
%U 161,167,171,173,179,181,185,191,193,199,203,205,211,213,217,223,227,229,233
%N Odd "odious" numbers (A000069).
%C In other words, numbers having a binary representation ending in 1, and an odd number of 1's overall. It follows that by decrementing an odd odious number, one gets an even evil number (A125592). - _Ralf Stephan_, Aug 27 2013
%C The members of the sequence may be called primitive odious numbers because every odious number is a power of 2 times one of these numbers. Note that the difference between consecutive terms is either 2, 4, or 6. - _T. D. Noe_, Jun 06 2007
%C From _Gary W. Adamson_, Apr 06 2010: (Start)
%C a(n) = A026147(n)-th odd number, where A026147 = (1, 4, 6, 7, 10, 11, ...); e.g.,
%C n: 1 2 3 4 5 6 7 8 9 10 11
%C n-th odd: 1 3 5 7 9 11 13 15 17 19 21
%C a(n): 1 7 11 13 19 21
%C etc. (End)
%C Numbers m, such that when merge-sorting lists of length m, the maximal number of comparisons is even: A003071(a(n)) = A230720(n). - _Reinhard Zumkeller_, Oct 28 2013
%C Fixed points of permutation pair A268717/A268718. - _Antti Karttunen_, Feb 29 2016
%H T. D. Noe, <a href="/A092246/b092246.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%H <a href="/index/So#sorting">Index entries for sequences related to sorting</a>
%F a(n) = 4*n + 2*A010060(n-1) - 3;
%F a(n) = 2*A001969(n-1) + 1.
%t Table[If[n < 1, 0, 2 n - 1 - Mod[First@ DigitCount[n - 1, 2], 2]], {n, 120}] /. n_ /; EvenQ@ n -> Nothing (* _Michael De Vlieger_, Feb 29 2016 *)
%t Select[Range[1, 1001, 2], OddQ[Total[IntegerDigits[#, 2]]]&] (* _Jean-François Alcover_, Mar 15 2016 *)
%o (PARI) is(n)=n%2&&hammingweight(n)%2 \\ _Charles R Greathouse IV_, Mar 21 2013
%o (PARI) a(n)=4*n-if(hammingweight(n-1)%2,1,3) \\ _Charles R Greathouse IV_, Mar 22 2013
%o (Haskell)
%o a092246 n = a092246_list !! (n - 1)
%o a092246_list = filter odd a000069_list
%o -- _Reinhard Zumkeller_, Oct 28 2013
%o (Python)
%o def A092246(n): return (n<<2)-(1 if (n-1).bit_count()&1 else 3) # _Chai Wah Wu_, Mar 03 2023
%Y Cf. A129771, A026147.
%Y Cf. A230709 (complement).
%Y Cf. A268717, A268718, A268673.
%K nonn,easy
%O 1,2
%A _Benoit Cloitre_, Feb 23 2004