login
A091831
Pierce expansion of 1/sqrt(2).
2
1, 3, 8, 33, 35, 39201, 39203, 60245508192801, 60245508192803, 218662352649181293830957829984632156775201, 218662352649181293830957829984632156775203
OFFSET
0,2
COMMENTS
If u(0)=exp(1/m) m integer>1 and u(n+1)=u(n)/frac(u(n)) then floor(u(n))=m*n.
LINKS
P. Erdős and Jeffrey Shallit, New bounds on the length of finite Pierce and Engel series, Sem. Théor. Nombres Bordeaux (2) 3 (1991), no. 1, 43-53.
Jeffrey Shallit, Some predictable Pierce expansions, Fib. Quart., 22 (1984), 332-335.
Pelegrí Viader, Lluís Bibiloni, Jaume Paradís, On a problem of Alfred Renyi, Economics Working Paper No. 340.
Eric Weisstein's World of Mathematics, Pierce Expansion
FORMULA
Let u(0)=sqrt(2) and u(n+1)=u(n)/frac(u(n)) where frac(x) is the fractional part of x, then a(n)=floor(u(n)).
1/sqrt(2)= 1/a(1) - 1/a(1)/a(2) + 1/a(1)/a(2)/a(3) - 1/a(1)/a(2)/a(3)/a(4)...
limit n -> infinity a(n)^(1/n) = e.
MATHEMATICA
PierceExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@ NestList[{Floor[1/Expand[1 - #[[1]] #[[2]]]], Expand[1 - #[[1]] #[[2]]]} &, {Floor[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; PierceExp[N[2^(-1/2), 7!], 17] (* G. C. Greubel, Nov 13 2016 *)
PROG
(PARI) r=sqrt(2); for(n=1, 10, r=r/(r-floor(r)); print1(floor(r), ", "))
CROSSREFS
Cf. A006784 (Pierce expansion definition), A028254
Sequence in context: A321522 A328053 A258690 * A284963 A372642 A148916
KEYWORD
nonn
AUTHOR
Benoit Cloitre, Mar 09 2004
STATUS
approved