Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #23 Apr 26 2021 14:28:25
%S 1,2,4,8,14,23,36,54,78,110,151,202,266,344,438,551,684,840,1022,1232,
%T 1473,1748,2060,2412,2808,3251,3744,4292,4898,5566,6301,7106,7986,
%U 8946,9990,11123,12350,13676,15106,16646,18301,20076,21978,24012,26184,28501,30968
%N G.f.: Product((1+x^i)/(1-x^i),i=1..n-1)/(1-x^n), with n = 5.
%C Poincaré series [or Poincare series] (or Molien series) for H^*(O_5(q); F_2).
%D A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 233.
%H Harvey P. Dale, <a href="/A091773/b091773.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,2,-3,4,-4,3,-2,3,-3,1).
%F G.f.: -(x^2-x+1)*(x^4+1) / ((x-1)^5*(x^2+x+1)*(x^4+x^3+x^2+x+1)). - _Colin Barker_, Jan 31 2013
%F a(n) = 3*a(n-1)-3*a(n-2)+2*a(n-3)-3*a(n-4)+4*a(n-5)-4*a(n-6)+3*a(n-7)-2*a(n-8)+3*a(n-9)-3*a(n-10)+a(n-11). - _Wesley Ivan Hurt_, Apr 26 2021
%t LinearRecurrence[{3,-3,2,-3,4,-4,3,-2,3,-3,1},{1,2,4,8,14,23,36,54,78,110,151},50] (* _Harvey P. Dale_, Feb 17 2018 *)
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Mar 18 2004