login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091773
G.f.: Product((1+x^i)/(1-x^i),i=1..n-1)/(1-x^n), with n = 5.
2
1, 2, 4, 8, 14, 23, 36, 54, 78, 110, 151, 202, 266, 344, 438, 551, 684, 840, 1022, 1232, 1473, 1748, 2060, 2412, 2808, 3251, 3744, 4292, 4898, 5566, 6301, 7106, 7986, 8946, 9990, 11123, 12350, 13676, 15106, 16646, 18301, 20076, 21978, 24012, 26184, 28501, 30968
OFFSET
0,2
COMMENTS
Poincaré series [or Poincare series] (or Molien series) for H^*(O_5(q); F_2).
REFERENCES
A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 233.
LINKS
FORMULA
G.f.: -(x^2-x+1)*(x^4+1) / ((x-1)^5*(x^2+x+1)*(x^4+x^3+x^2+x+1)). - Colin Barker, Jan 31 2013
a(n) = 3*a(n-1)-3*a(n-2)+2*a(n-3)-3*a(n-4)+4*a(n-5)-4*a(n-6)+3*a(n-7)-2*a(n-8)+3*a(n-9)-3*a(n-10)+a(n-11). - Wesley Ivan Hurt, Apr 26 2021
MATHEMATICA
LinearRecurrence[{3, -3, 2, -3, 4, -4, 3, -2, 3, -3, 1}, {1, 2, 4, 8, 14, 23, 36, 54, 78, 110, 151}, 50] (* Harvey P. Dale, Feb 17 2018 *)
CROSSREFS
Sequence in context: A201347 A089054 A055291 * A107055 A202840 A018153
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 18 2004
STATUS
approved