login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091773 G.f.: Product((1+x^i)/(1-x^i),i=1..n-1)/(1-x^n), with n = 5. 2
1, 2, 4, 8, 14, 23, 36, 54, 78, 110, 151, 202, 266, 344, 438, 551, 684, 840, 1022, 1232, 1473, 1748, 2060, 2412, 2808, 3251, 3744, 4292, 4898, 5566, 6301, 7106, 7986, 8946, 9990, 11123, 12350, 13676, 15106, 16646, 18301, 20076, 21978, 24012, 26184, 28501, 30968 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Poincaré series [or Poincare series] (or Molien series) for H^*(O_5(q); F_2).

REFERENCES

A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 233.

LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,-3,2,-3,4,-4,3,-2,3,-3,1).

FORMULA

G.f.: -(x^2-x+1)*(x^4+1) / ((x-1)^5*(x^2+x+1)*(x^4+x^3+x^2+x+1)). - Colin Barker, Jan 31 2013

a(n) = 3*a(n-1)-3*a(n-2)+2*a(n-3)-3*a(n-4)+4*a(n-5)-4*a(n-6)+3*a(n-7)-2*a(n-8)+3*a(n-9)-3*a(n-10)+a(n-11). - Wesley Ivan Hurt, Apr 26 2021

MATHEMATICA

LinearRecurrence[{3, -3, 2, -3, 4, -4, 3, -2, 3, -3, 1}, {1, 2, 4, 8, 14, 23, 36, 54, 78, 110, 151}, 50] (* Harvey P. Dale, Feb 17 2018 *)

CROSSREFS

Sequence in context: A201347 A089054 A055291 * A107055 A202840 A018153

Adjacent sequences:  A091770 A091771 A091772 * A091774 A091775 A091776

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Mar 18 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 10:53 EST 2021. Contains 349440 sequences. (Running on oeis4.)