Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Feb 19 2021 20:10:00
%S 0,0,12,216,3500,58494,1028167,18954072,363991752,7231521650,
%T 147777013109,3091874792274,65993049570175,1432803420182428,
%U 31570847522072400,704668366087255200,15907964778448807820
%N Number of orbits of length n under the map whose periodic points are counted by A061694.
%C Old name was: A061694 appears to count the periodic points for a certain map. If so, then this is the sequence of the numbers of orbits of length n under that map.
%H Vaclav Kotesovec, <a href="/A091266/b091266.txt">Table of n, a(n) for n = 1..200</a>
%H Y. Puri and T. Ward, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/WARD/short.html">Arithmetic and growth of periodic orbits</a>, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
%H J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/SIXDENIERS/bell.html">Extended Bell and Stirling Numbers From Hypergeometric Exponentiation</a>, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
%H Thomas Ward, <a href="http://web.archive.org/web/20081002082625/http://www.mth.uea.ac.uk/~h720/research/files/integersequences.html">Exactly realizable sequences</a>. <a href="/A091112/a091112.pdf">[local copy]</a>.
%F If b(n) is the n-th term of A061694, then a(n) = (1/n)*Sum_{d|n}mu(d)b(n/d).
%F a(n) ~ 3^(3*n + 1) / (8 * Pi^2 * n^3). - _Vaclav Kotesovec_, Sep 05 2019
%e b(1)=0, b(3)=36 so a(3)=12.
%t Table[Sum[MoebiusMu[d] * Sum[Sum[((n/d)!/(i!*j!*(n/d - i - j)!))^3/6, {i, 1, n/d - j - 1}], {j, 1, n/d}], {d, Divisors[n]}]/n, {n, 1, 20}] (* _Vaclav Kotesovec_, Sep 05 2019 *)
%Y Cf. A061694.
%K nonn
%O 1,3
%A _Thomas Ward_, Feb 24 2004
%E Name clarified by _Michel Marcus_, May 14 2015