login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091266
Number of orbits of length n under the map whose periodic points are counted by A061694.
1
0, 0, 12, 216, 3500, 58494, 1028167, 18954072, 363991752, 7231521650, 147777013109, 3091874792274, 65993049570175, 1432803420182428, 31570847522072400, 704668366087255200, 15907964778448807820
OFFSET
1,3
COMMENTS
Old name was: A061694 appears to count the periodic points for a certain map. If so, then this is the sequence of the numbers of orbits of length n under that map.
LINKS
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
FORMULA
If b(n) is the n-th term of A061694, then a(n) = (1/n)*Sum_{d|n}mu(d)b(n/d).
a(n) ~ 3^(3*n + 1) / (8 * Pi^2 * n^3). - Vaclav Kotesovec, Sep 05 2019
EXAMPLE
b(1)=0, b(3)=36 so a(3)=12.
MATHEMATICA
Table[Sum[MoebiusMu[d] * Sum[Sum[((n/d)!/(i!*j!*(n/d - i - j)!))^3/6, {i, 1, n/d - j - 1}], {j, 1, n/d}], {d, Divisors[n]}]/n, {n, 1, 20}] (* Vaclav Kotesovec, Sep 05 2019 *)
CROSSREFS
Cf. A061694.
Sequence in context: A274956 A116164 A268369 * A119309 A034788 A082165
KEYWORD
nonn
AUTHOR
Thomas Ward, Feb 24 2004
EXTENSIONS
Name clarified by Michel Marcus, May 14 2015
STATUS
approved